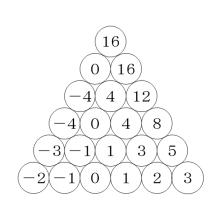
(1)

1段目の中央の数をxとすると、



7 段目は 64x と表せる 64x = 320 x = 5 したがって、左端の数は 16x - 16 16x 16x + 16 x - 3 = 5 - 3 8x - 12 8x - 4 8x + 4 8x + 12 = 2 4x - 8 4x - 4 4x 4x + 4 4x + 8 2x - 5 2x - 3 2x - 1 2x + 1 2x + 3 2x + 5 x - 3 x - 2 x - 1 x x + 1 x + 2 x + 3

一段目が -2、-1、0、1、2、3 のとき, 最上段の六段目の数

16

一段目が 7つの数で最上段が320のとき,

一段目の数

2, 3, 4, 5, 6, 7, 8

(2)

①段数が1の場合 1段目の数は64

②段数が2の場合 1段目の左端の数をxとする(以下、偶数段の場合は同じようにする。)と、最上段は、2x+1となる。

2x+1=64 2x=63 x=31.5 となり、整数にならないので 2段の場合はない。

③段数が3の場合 1段目の中央の数をxとする(以下、奇数段の場合は同じようにする。)と、最上段は、4xとなる。

4x=64 x=16 よって、1段目に並ぶ数は15、16、17

④段数が4の場合 最上段は8x+12となる。

8x+12=64 8x=52 x=6.5

整数にならないので4段の場合はない。

⑤段数が5の場合 最上段は、16xとなる。16x=64 x=4 よって、1段目に並ぶ数は2、3、4、5、6

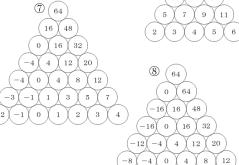
⑥段数が6の場合 最上段は32x+80となる。

32 x + 80 = 64 32 x = -64 x = -0.5

整数にならないので6段の場合はない。

⑦段数が 7 の場合 最上段は、64x となる。64x=64 x=1 よって、1 段目に並ぶ数は-2、-1、0、1、2、3、4

(1) (64) (31) (33) (15) (16) (17)



-5 -3 -1 1 3 5 7 -3 -2 -1 0 1 2 3 4 、最上段の数は、4 段のとき このときの最大の段数を考え

(5) (64)

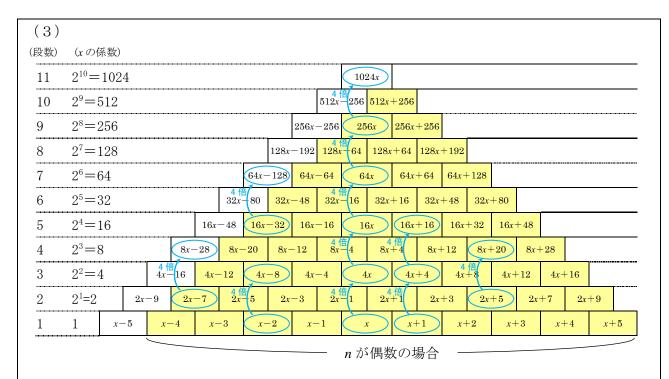
28 36

12 16 20

⑧段数が偶数の場合、2 段目は奇数個なので、2 段目の中央の数をx とすると、最上段の数は、4 段のときは 4x、6 段のときは 16x、というように、2 段ごとに 4 倍になっている。このときの最大の段数を考えると、最上段の 64 を 4 でわると、2 段下の中央の数になる。これを繰り返すと、最上段の 6 段下の中央の数が 1 となる。この段が 2 段目となるときが段数が偶数の場合の最大の段数のときになる。よって、1 段目に並ぶ数は、-3、-2、-1、0、1、2、3、4

☆段数が奇数の場合、1段目の中央の数をxとすると、3段目は4x、5段目は16x、というように、最上段の数は2段ごとに4倍になっているので、7段目以上は整数にならない

したがって、最上段の数が 64 になるのは、1 段、3 段、5 段、7 段、8 段のときで、1 段目に並ぶ数は上記の下線部である。



○2 段目は全て奇数になる。3 段目以上は2 段下の数の4 倍になる。

n が奇数の場合は1段目の中央の数をx、n が偶数の場合は1段目の中央の数をxとx+1とおくと、次のことが分かる。

〇1段目のxの2段上の数を順に見ると、3段目は4x、5段目は、16x…と、全て2段下の数の4倍になっていて、n段目は $2^{n-1}x$ となる。

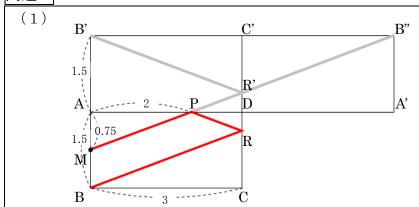
例えば、n=11 のとき、 $2^{10}x=1024x$ となっている。

1段目のxの次の数x+1の場合も、2段上の数は4x+4=4(x+1)となり、x+1の4倍になっている。その2段上も16(x+1)となり、4(x+1)の4倍になっている。

このように、ある数の2段上の数は、ある数の4倍となっている。

- 〇横に見ていくと、1段目は連続する整数なので1ずつ増える。2段目は2ずつ増える。3段目は4ずつ増え、4段目は8ずつ増えている。n段目は 2^{n-1} の差になっている。
- $\bigcirc n$ が偶数の場合、最上段の数は、 $2^{n-1}x+2^{n-2}$ となる。 例えば、n=10 のとき、最上段の数は $2^9x+2^8=512x+256$ となっている。
- $\bigcirc n$ が奇数の場合、最上段の数は、 $2^{n-1}x$ となる。

問題2



上の図のように、長方形 ABCD を対称移動した長方形 AB'C'D、長方形 AB'C'D を対称移動した長方形 A'B''C'D とし、AB の中点を M とする。このとき、点 M から辺 BC に平行な方向に 2m、辺 BC に垂直な 方向に 0.75m 移動した点が P となる。この割合で点 P からさらに横に 4m 進むと、縦に 1.5m 移動する ことになり、点 B''を通ることがわかる。玉は枠に当たると等しい角度で跳ね返るから、点 P の次に跳ね返る DC 上の点を R とすると、直線 MB''と辺 C'D の交点 R'と点 R は直線 AA'を対称の軸とした対称な点になる。また、線分 R'B''と線分 R'B'は直線 CC'について対称で、線分 R'B' と線分 RB は直線 AA について対称になることから、玉は点 P、点 R で跳ね返り、B の穴に入る。

(2)

辺 AB の中点を M、直線 MQ と B'C'の交点を R'とする。 点 R'と辺 AD について線対称な点を R とすると、

$$\angle R'QD = \angle RQD$$

対頂角は等しいから

 $\angle R'QD = \angle MQA$

したがって ∠MQA=∠RQD

よって、玉は点Qで跳ね返り、点Rで跳ね返る。

線分 R'R と辺 AD の交点を S とすると、 \triangle R'QS と \triangle D'R'C'において、

同位角は等しいから

$$\angle R'QS = \angle D'R'C' \cdots \bigcirc$$

点Rと点R'は辺ADについて線対称な点だから

$$\angle R'SQ = 90^{\circ}$$

四角形 A'B'C'D'は長方形だから

$$\angle$$
 D'C'R'=90°

したがって $\angle R'SQ = \angle D'C'R'$ ……②

R'S は長方形の縦の長さと等しいから

$$R'S = D'C' \cdots 3$$

①、②、③より1辺とその両端の角がそれぞれ等しいから

 $\triangle R'QS \equiv \triangle D'R'C'$

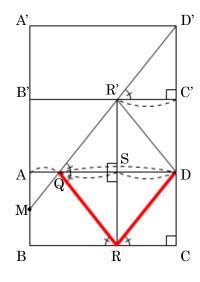
 \triangle D'R'C'を辺 B'C'を対称の軸として対称移動し、さらに辺 AD を対称の軸として対称移動すると \triangle DRC と重なるため、 \angle D'R'C'= \angle DRC

また、点 R と点 R'は辺 AD について線対称な点だから、 \angle R'QS= \angle RQS

平行線の錯角は等しいから、 $\angle QRB = \angle RQS$

よって、∠QRB=∠DRC

したがって、玉は点Rで跳ね返り、Dの穴に入る。



(3)玉が4回跳ね返るためには、ABの中点Mと長方形ABCDを対称移動した図形の頂点を ①D 結んだ線が長方形の辺と4回交わった場合であり、左の図のような10通りとなる。 〈①の説明〉右下の図のように長方形 ABCD を対称 移動した長方形の辺と MD との交点を P、 ③D Q、R、Sとする。Q、R、Sと辺AD、B'C'、 **4**B A'D'について対称な点を D" Q'、R'、S'とし、S'と辺AD (5)D とについて対称な点を S" B" C" とする。このとき、玉は 6 C $M \rightarrow P \rightarrow Q' \rightarrow R' \rightarrow S \rightarrow D$ Ø R \mathbf{D}^{\prime} 順で跳ね返り穴に入る。 (7)A 線分 QQ'と辺 AD の交点を C R' Tとすると、△PTQ は ®C P T R △PMA を 2 倍した三角形 A になることから、AP:PT 9A M' =1:2 したがって、AP: 10 C PD=1:8になる。最初に 跳ね返る位置は辺AP:PD =1:8となる点 P である。 В" <②の説明> 辺 B""A"が線分 MA の 6 倍になっていることから、ΔB""A"P A"" は \triangle MAP を 6 倍した三角形である。したがって、AP: PA"=1:6 R 6 になる。AP:AA"=1:7、AP:AD=1:3.5=2:7、よって、AP: Q/ B" PD=2:5になる。したがって、最初に跳ね返る位置は、辺AD上の AP: PD=2:5となる点Pである。 A" Μ 〈③の説明〉AM:D"D"=1:4より、AP:PD"=1:4、 AP : AD'' = 1 : 5, AP : AD = 1 : 5/3 = 3 : 5,D" よって AP: PD=3:2 最初に跳ね返る位置は、辺 AD 上の AP: PD=3:2 B' S' C"4 となる点 P である。 D'" D 〈④の説明〉AM: A"B"=1:2より、 Q' AQ : QA = 1 : 2, AQ : AA'' = 1 : 3,В C AQ : AD = 1 : 3/4 = 4 : 3B' В" よって、DQ:AQ=1:4、 よって、DP: AM=1:4、 D' A" D Q DP : AB = 1 : 8, DP : PC = 1 : 7R 最初に跳ね返る位置は、辺 DC 上の DP: S" M PC=1:7となる点Pである。 С B' \mathbf{R} D" 〈⑤の説明〉DD": AD"=4:5、DP: AM =4:5, DP: AB=4:10=2:5, DP : PC = 2 : 3最初に跳ね返る位置は、辺 DC 上 の DP: PC=2:3 となる点 P である。

⑥と⑤、⑦と④、⑧と③、⑨と②、⑩と①は AB の中点 M を通り AD に平行な直線について線対称にな

っているから、跳ね返る位置も対称な位置になり、⑥、 \otimes 、 \otimes は C、 \circ 、 \circ は A の穴に入る。

問題3

(1)

中央値

Г																
	生徒	a	b	c	d	e	f	g	h	i	j	k	l	m	n	0
	得点	95	88	86	83	78	67	66	65	64	62	59	5 3	52	51	50
	グループ		A	1			В С									

平均値 $(95+88+86+83+78+67+66+65+64+62+59+53+52+51+50) \div 15=67.9$ 67.9 点

中央値 65点

よって、平均点より低い得点で中央値より高い得点を取った生徒は、fの 67 と g の 66 である。

f , g

(2) (1)

1回目

	生徒	a	b	с	d	e	f	g	h	i	j	k	l	m	n	0
	得点	95	88	86	83	78	67	66	65	64	62	59	5 3	52	51	50
Ī	グループ		A(8	88)				B(67)		C(53)					

2回目hが 84点でAグループに移動すると、Bグループの平均点は 67.4点になり、Bグループの平均点が上がる。どのグループの平均点も下げるためには、kが Bグループに移動しなければいけない。kの得点をxとし、Bの平均点が変わらないとすると、

 $(8+67+66+65+64+62+x) \div 6=67$

$$337+x=402$$
 $x=402-337$
 $x=65$

B の平均点が下がるためには、k の得点は 60 点以上 64 点以下になります。

2 回目	×				\			k	_									
生徒	а	b	с	d	h	e	f	g	W	i	j	k	\k/	l	m	n	0	
得点	95	88	86	83	84	78	67	66	65	64	62	64	<i>5</i> 9\	5 3	52	51	50	
グループ		1	A(88))				-	B(67))			C(53)					

- $\cdot k$ が C グループから B グループに移動すると C グループの平均点も下がる。
- $\cdot h$ が A グループに移動すると、A グループの平均点は下がる。
- ・k が 60 点以上 64 点以下で B グループに移動すると、B グループの平均点が下がる。

60 点以上 64 点未満

(2) (2)

2人の得点が上がっているのに、どのグループの平均点も下がっているので、少なくても 1人は C グループ から B か A に移動している。

[1] C グループで 1 人だけ得点が上がっている場合

C グループの平均点が下がるためには、C グループの平均点より高い人が A か B グループに移動す る必要がある。1回目のCグループの平均点は53点だったので、それより得点の高いkが移動して いる。

$\langle k$ が A グループに移動した場合 \rangle

・B グループの平均点が下がるためには、B グループの平均点より得点の高いeが、A グループに移 動している。

					V	1											
生徒	а	b	c	d	k	e	e	f	g	h	i	j	k	l	m	n	o
得点	95	88	86	83	88	87	×	67	66	65	64	62	39	53	52	51	50
グループ		Α	(87.9	9以下	$\frac{1}{2}$		B(64.6) C(51.5)										
L 。																	

k、e の得点の合計が 175 点以下

☆したがって、1回目より高い得点を取った生徒の組み合わせは (k, e)である。

$\langle k$ が B グループに移動した場合 \rangle

 $\cdot k$ が 60 点だったとすると、B グループの最低点の i が抜けても B グループの平均点は約 66.7 となり、 \mathbf{B} グループの平均点は下がる。したがって $e \sim j$ のどの人が \mathbf{A} グループに移動しても、 \mathbf{B} グループの平均 点は下がる。

					K				_			k					
生徒	а	b	c	d	$e \sim j$	e	f	g	h	i	j	k	k	l	m	n	0
得点	95	88	86	83	87 以下	78	67	66	65	64	62	60	X	5 3	52	51	50
グループ		A(8	7.8以	(下)				В(約66	.7)		C(51.5)					

☆したがって、1回目より高い得点を取った生徒の組み合わせは

(k, e), (k, f), (k, g), (k, h), (k, i), (k, j)

[2] C グループで 2 人得点が上がっている場合

- $\cdot k$ が移動した場合、最低点の o が移動しても C グループの平均点は 52 点となり 1 回目より下がる。
- $\cdot k$ が移動していない場合、次に得点が高い $l \ge m$ が移動しても、平均点は 53.3 点となり 1 回目より 上がる。
- ・A、B グループの平均点が下がるためには、 $k\sim o$ が A グループと B グループに 1 人ずつ平均点より 低い得点で移動するとよい。

			K															
生徒	а	b	c	d	<i>k</i> ~ <i>o</i>	e	f	g	h	i	$j \mid k \sim 0 \mid k \mid l \mid m \mid n$						o	
得点	95	88	86	83	87 以下	78	67	66	65	64	62	66 以下	59	53	52	51	50	
グループ	A(87.8以下)							B(約	66.9	以下)				C(52)				

☆したがって、1回目より高い得点を取った生徒の組み合わせは

(k, l), (k, m), (k, n), (k, o)

よって、1回目より高い得点を取った生徒2人の組み合わせは