THE REPORT ON WORKS OF
KOCHI PREFECTURAL
PAPER TECHNOLOGY CENTER

VOL. 18

2013

KOCHI PREFECTURAL PAPER TECHNOLOGY CENTER
287-4 Hakawa, Ino-cho, Agawa-gun, Kochi, 781-2128 JAPAN
は じ め に

先日9月7日の早朝、遠く南米の地ブエノスアイレスからビッグニュースとして、オリンピックが2020年に東京で開催されるとの報が飛び込んでまいりました。震災後の復旧事業や円高等の景気衰退ばかりであった昨年の末、政権が変わり、円安、緩やかなインフレ基調となり景気回復の兆しが見えてきた中の大いにうれしい話題となりました。

さて平成24年度は、第二期の高知県産業振興計画の実行年ということで、従来からの共同研究開発、技術相談・指導、依頼分析試験など技術的支援を積極的に展開して参りました。運営方針についても、昨年に引き続き、産業振興計画に基づいた紙産業支援として、延べ400社近くの企業を訪問し、ニーズの把握に努める一方、県、国等の助成制度の紹介などの情報提供や新商品開発、販売・用途等の相談に対応するなど、企業支援を実施し、企業が国や県などの補助金獲得や地域産業資源活用事業計画などの各種認定を得ることを支援することができました。また、年間3,294件（12,505千円）の依頼分析試験、618件（371千円）の設備使用に対応し、抄紙機などのプラントを使った試験やクレーム処理のための機器分析等で企業の商品開発と販売促進に貢献することができました。さらに、昨年度引き延べ各課題の研究者研修、研究会活動、講演会などで人文科学分野に力を入れてきました。特に２３年度導入新規プラントを活用した、かみわざひとづくり事業は３つの分科会を設立し、業界の皆様と一緒に問題解決を図ってゆく研究会として好評を得ました。

次に、企業等との共同研究として、「安全」と「環境」に適応した次世代型機能性インテリア紙製品の開発研究」、「大気汚染測定用ダストフィルターの開発」、「文化財補修用竹紙製造法の確立」を実施しました。その他にも「製紙スラッジの有効利用に関する研究」、「柔らかさとふき取り性をさらに向上させた衛生用紙の開発」など7課題を実施しました。

また、（独）民族学博物館、（一社）国宝修理装工舎種連盟などと連携して、文化財の保存修復技術分野において、和紙を用いた文化財修復に関する充実した支援機関を目指してきました。過去数十年から現在まで古文書等の修復に用いられる表具用紙等の分析データを蓄積するとともに、２５年度も文化財修理に携わる技術者への和紙製造技術に関する研修や後継者育成に当たっています。そのほかに、外部資源への挑戦と支援機関や大学等とのネットワークの活用と連携に努めてきました。

この報告書は、当センターの平成24年度の業務全般と研究成果についてまとめたものです。ご高覧いただき、皆様の業務にお役立てば幸甚に存じます。今後も「地域産業の支援機関」として、関係機関の皆様方のニーズを大切にしながら、成果の普及と技術支援に力を入れていく所存ですので、ご理解とご支援をお願いします。

平成25年11月

高知県立紙産業技術センター
所 長 関 正 純

—1—
Ⅰ 紙産業技術センターの概要
1 沿 革

昭和7年 明治41年に設立された土佐紙業組合製紙試験場が県に移管され、高知県商工課工業試験所となる。

昭和10年 高知県商工奨励館設立により、同館工業試験場となる。

昭和16年 製紙部門を独立し、高知県紙業試験場となる。

昭和17年 本館及び手すき実験室を改築する。

昭和34年 第一工場(機械すき、手すき試験室)が竣工する。

昭和42年 本館が竣工し、加工科を新設する。

昭和43年 第二工場(加工試験室、パルプ室、車庫)が竣工する。

昭和47年 第二工場手すき仕上げ室を試験室に整備拡充する。

昭和57年 機構改革に伴い、手すき紙科の新設とともに、第二工場加工試験室を整備拡充する。

昭和59年 指導施設費補助事業の実施とともに、試験機を充実する。

平成1年 技術開発補助事業(融合化研究)の実施とともに、試験機を充実する。

平成2年 技術パイオニア養成事業の実施とともに、試験機を充実する。

平成5年 戦略的地域技術形成事業の実施とともに、試験機を充実する。

平成6年 建築工事(本館棟、第一研究棟、第二研究棟他)が竣工し、多目的テスト抄紙機、大型垂断網抄紙機、多目的不織布製造装置及びテストコーダー、ラミネーターのプラント設備をはじめ、試験研究設備を整備拡充する。

戦略的地域技術形成事業の実施とともに、小型傾斜型短網抄紙機等を設置する。

平成7年 吾川郡伊野町波川に高知県立紙業技術センターと名称変更して、移転する。

平成8年～9年 地域産業集積中小企業等振興対策費補助事業の実施とともに、試験機を充実する。

平成10年～11年 地域産業集積中小企業等振興対策費補助事業及びベンチャー企業育成型地域コンソーシアム研究開発事業の実施とともに、試験機を充実する。

平成12年～13年 地域産業集積中小企業等振興対策費補助事業及び中小企業技術開発産学官連携促進事業の実施とともに、試験機を充実する。

平成14年 地域産業集積中小企業等振興対策費補助事業の実施とともに、試験機を充実する。

平成15年 組織改革により、組織を総務班、不織布・加工部、製紙技術部とする。

平成17年～18年 地域新生コンソーシアム研究開発事業の実施とともに、試験機を充実する。

平成19年 組織改革により、組織を総務、不織布・加工課、製紙技術課とする。

平成20年～21年 地域イノベーション創出総合支援事業の実施とともに、試験機を充実する。

平成22年 地域イノベーション創出総合支援事業、研究成果展開事業及び地域研究成果事業化支援事業の実施とともに、試験機を充実する。

平成23年 地域研究成果事業化支援事業の実施及び地域活性化交付金（住民生活に光を注ぐ交付金）により、試験機を充実する。

—3—
2 組織及び業務

総務
次長兼
チーフ
大崎 俊道
主幹
本橋 紀子
主幹
山中 亜子

(1)文書及び公印に関すること
(2)人事業務に関すること
(3)給与及び旅費に関すること
(4)福利厚生に関すること
(5)予算及び決算に関すること
(6)財産に関すること
(7)物品等に関すること
(8)その他庶務に関すること
(9)その他他課の所管に属ない事項に関すること

不織布・加工課
技術次長兼
不織布・加工課長
澤村 淳二
チーフ
田村 美理
主任研究員
鈴木 慎司
主任研究員
滝口 宏人
研究員
殿山 眞央

(1)乾式不織布及び紙加工の研究開発に関すること
(2)加工用薬品・素材の基礎・応用研究に関すること
(3)生産設備の合理化、省エネルギー・公害防止に関すること
(4)多目的不織布製造装置、テストコーダー&ラミネーター、エレクトロスピニング装置、メルトブロー不織布製造装置による評価評価に関すること
(5)乾式不織布及び紙加工技術の技術者養成に関すること
(6)施設・設備の開放促進事業に関すること
(7)依頼試験、技術相談指導等に関すること

製紙技術課
製紙技術課長
近森 啓一
チーフ
山下 実
主任研究員
森澤 純
主任研究員
有吉 正明

(1)機械すき紙及び手すき紙の研究開発に関すること
(2)抄紙用薬品・原材料の基礎・応用研究に関すること
(3)生産設備の合理化、省エネルギー・公害防止に関すること
(4)多目的テスト抄紙機、大型懸垂短網抄紙機による評価評価に関すること
(5)古文書等の修復用和紙に関すること
(6)機械すき紙及び手すき紙技術の技術者養成に関すること
(7)施設・設備の開放促進事業に関すること
(8)依頼試験、技術相談指導等に関すること
3 職員の構成

<table>
<thead>
<tr>
<th>班部別</th>
<th>事務職員</th>
<th>技術職員</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>所長</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>次長</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>技術次長</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>総務</td>
<td>3（1兼）</td>
<td>3（1兼）</td>
<td>6</td>
</tr>
<tr>
<td>不織布・加工課</td>
<td>5（1兼）</td>
<td>5（1兼）</td>
<td>10</td>
</tr>
<tr>
<td>製紙技術課</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>計</td>
<td>3</td>
<td>10</td>
<td>13</td>
</tr>
</tbody>
</table>

4 施設の概要

敷地面積 13,069.79㎡
建物延面積 5,788.51㎡

<table>
<thead>
<tr>
<th>建物</th>
<th>建築面積</th>
<th>延 面 積</th>
</tr>
</thead>
<tbody>
<tr>
<td>本館棟(鉄筋コンクリート造 一部3階建)</td>
<td>1,205.68㎡</td>
<td>2,615.42㎡</td>
</tr>
<tr>
<td>第一研究棟(鉄筋コンクリート造 一部鉄骨造2階建)</td>
<td>920.79㎡</td>
<td>1,465.60㎡</td>
</tr>
<tr>
<td>第二研究棟(鉄筋コンクリート造 一部鉄骨造2階建)</td>
<td>1,035.98㎡</td>
<td>1,550.40㎡</td>
</tr>
</tbody>
</table>

その他
車庫(鉄骨造) 31.33㎡
駐輪場(鉄骨造) 17.62㎡
受水槽施設(鉄筋コンクリート造) 40.00㎡
排水処理施設(鉄筋コンクリート造) 59.78㎡
焼却炉(鉄筋コンクリート造 一部鉄骨造)(現在は使用禁止) 8.36㎡

5 決算（24年度）

(歳出)

<table>
<thead>
<tr>
<th>科目</th>
<th>金額(千円)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>紙産業技術センター管理運営費</td>
<td>27,489</td>
<td></td>
</tr>
<tr>
<td>紙産業技術試験研究費</td>
<td>2,103</td>
<td></td>
</tr>
<tr>
<td>紙産業技術振興促進費</td>
<td>8425</td>
<td></td>
</tr>
<tr>
<td>紙産業育成事業費</td>
<td>6,262</td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>44,279</td>
<td></td>
</tr>
</tbody>
</table>

(歳入)

<table>
<thead>
<tr>
<th>科目</th>
<th>金額(千円)</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>使料</td>
<td>522</td>
<td>試験設備使用料等</td>
</tr>
<tr>
<td>手料</td>
<td>12,488</td>
<td>依頼試験手数料</td>
</tr>
<tr>
<td>諸入</td>
<td>1,786</td>
<td>委託研究、開放試験設備利用研修負担金等</td>
</tr>
<tr>
<td>計</td>
<td>14,796</td>
<td></td>
</tr>
</tbody>
</table>

—5—
6 試験手数料及び機械器具使用料

(1) 試験手数料（県内） ※県外については倍額

| 区 分 | 種 別 | 別 | 単 位 | 金額 (
| 区 分 | 種 別 | 別 | 単 位 | 金額 (円)| |
|-------|------|----|-------|-----|
| 定性分析 | 一般的なもの | 指定成分1成分につき | 1,570 |
| | 特殊なもの | 指定成分1成分につき | 3,050 |
| 定量分析 | 一般的なもの | 指定成分1成分につき | 3,050 |
| | 特殊なもの | 指定成分1成分につき | 6,250 |
| | 特殊機器によるもの | 1件（指定成分1成分）につき | 12,700 |
| | 特殊機器によるもの | 1件（指定成分1成分）につき | 27,940 |
| | 特殊機器によるもの | イオンクロマトグラフによるもの | 9,920 |
| | 特殊機器によるもの | 分析走査型電子顕微鏡によるもの | 10,120 |
| | 特殊機器によるもの | 高速溶媒抽出装置によるもの | 5,700 |
| | 特殊機器によるもの | 極微弱発光検出分光システムによるもの | 6,540 |
| 物理化学 | 紙及び板紙の物理試験 | 1件につき | 1,650 |
| | 段ボールの物理試験 | 1件につき | 1,990 |
| | さらし率試験 | 1試料につき | 3,610 |
| | 細繊相対粘度試験 | 1試料につき | 5,170 |
| | 灰分試験 | 1試料につき | 3,310 |
| | 紙料水分試験 | 1試料につき | 1,660 |
| | 紙水分試験 | 1試料につき | 1,290 |
| | サイズ度試験 | 1試料につき | 1,570 |
| | きょう雑物試験 | 1試料につき | 1,790 |
| | p H試験 | 1試料につき | 1,790 |
| | 細繊組成試験 | 光学顕微鏡によるもの | 1試料につき | 1,950 |
| | 細繊組成試験 | 薬品溶解定量によるもの | 1試料につき | 3,960 |
| | 指示薬を使用する紙質試験 | 1試料につき | 620 |
| | 裾（たい）色度試験 | 1件（1時間まで）につき | 1,130 |
| | (加湿によるものの場合は、1件（1時間まで）につき980円を加える。) (1時間を超える場合は、1時間につき190円(加湿によるものの場合は240円)を加える。) | |
| | 印刷適性試験 | 1件につき | 3,330 |
| | 顕微鏡写真 手札型 | 1件（3枚）につき | 3,330 |
| | 走査電子顕微鏡写真 手札型 | 1件（3枚）につき | 4,540 |
| | 繊維長分布測定試験 | 1試料につき | 2,820 |
| | 縦孔分布測定試験 | 1試料につき | 2,600 |

平成24年4月1日現在
<table>
<thead>
<tr>
<th>区 分</th>
<th>種 別</th>
<th>単 位</th>
<th>金額 (円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>物理化学試験</td>
<td>恒温恒湿槽試料処理試験</td>
<td>1件 (1時間まで)につき</td>
<td>1,500</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1時間を超える場合は1時間につき620円を加える。)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ラウンダーメータによる処理試験</td>
<td>1件につき</td>
<td>1,990</td>
</tr>
<tr>
<td></td>
<td>燃焼速度試験</td>
<td>1件につき</td>
<td>2,340</td>
</tr>
<tr>
<td></td>
<td>衣服内環境試験</td>
<td>1件につき</td>
<td>3,840</td>
</tr>
<tr>
<td></td>
<td>真空乾燥試験</td>
<td>1件につき</td>
<td>2,860</td>
</tr>
<tr>
<td></td>
<td>電気伝導率測定試験</td>
<td>1件につき</td>
<td>1,790</td>
</tr>
<tr>
<td></td>
<td>大型滑走式ミクロトームによる処理試験</td>
<td>1件につき</td>
<td>3,790</td>
</tr>
<tr>
<td></td>
<td>テンション万能試験機による試験</td>
<td>1件につき</td>
<td>1,840</td>
</tr>
<tr>
<td></td>
<td>分析走査型電子顕微鏡写真</td>
<td>1件につき</td>
<td>5,050</td>
</tr>
<tr>
<td></td>
<td>往復摩擦試験</td>
<td>1件につき</td>
<td>3,620</td>
</tr>
<tr>
<td></td>
<td>赤外線サーモグラフィによる熱画像測定試験</td>
<td>1件につき</td>
<td>1,420</td>
</tr>
<tr>
<td>原料処理試験</td>
<td>紙料調整試験</td>
<td>1件 (1キログラムまで)につき</td>
<td>1,740</td>
</tr>
<tr>
<td></td>
<td>大型開放釜による蒸解試験</td>
<td>1件につき</td>
<td>12,480</td>
</tr>
<tr>
<td></td>
<td>中型開放釜による蒸解試験</td>
<td>1件につき</td>
<td>10,190</td>
</tr>
<tr>
<td></td>
<td>小型開放釜による蒸解試験</td>
<td>1件につき</td>
<td>4,520</td>
</tr>
<tr>
<td></td>
<td>オートクリーブによる蒸解試験 (使用薬品を除く)</td>
<td>1件につき</td>
<td>6,770</td>
</tr>
<tr>
<td></td>
<td>地球釜による蒸解試験 (使用薬品を除く)</td>
<td>1件につき</td>
<td>20,940</td>
</tr>
<tr>
<td></td>
<td>粉砕処理試験</td>
<td>1件につき</td>
<td>3,700</td>
</tr>
<tr>
<td></td>
<td>超微粒碎砕機による摩耗試験試験</td>
<td>1件につき</td>
<td>2,270</td>
</tr>
<tr>
<td></td>
<td>オゾン水実験装置による処理試験</td>
<td>1件につき</td>
<td>4,980</td>
</tr>
<tr>
<td>抄紙試験</td>
<td>多目的テスト抄紙機による抄紙試験</td>
<td>1時間につき</td>
<td>28,030</td>
</tr>
<tr>
<td></td>
<td>多目的不織布製造装置による抄紙試験</td>
<td>1時間につき</td>
<td>19,870</td>
</tr>
<tr>
<td></td>
<td>小型抄紙機による抄紙試験</td>
<td>1時間につき</td>
<td>9,520</td>
</tr>
<tr>
<td></td>
<td>大型懸垂短網抄紙機による抄紙試験</td>
<td>1時間につき</td>
<td>16,020</td>
</tr>
<tr>
<td></td>
<td>手すき抄紙試験</td>
<td>1時間 (10枚)につき</td>
<td>3,490</td>
</tr>
<tr>
<td></td>
<td>シートマシンによる抄紙試験</td>
<td>1時間 (10枚)につき</td>
<td>2,410</td>
</tr>
<tr>
<td></td>
<td>サンプルローラーカードによる製造試験</td>
<td>1時間につき</td>
<td>6,390</td>
</tr>
<tr>
<td></td>
<td>エレクトロスピニング装置による製造試験</td>
<td>1時間につき</td>
<td>8,850</td>
</tr>
<tr>
<td></td>
<td>メルトプロープ不織布製造装置による製造試験</td>
<td>1時間につき</td>
<td>27,690</td>
</tr>
<tr>
<td>加工試験</td>
<td>テストコーダー&ラミネーターによる加工試験</td>
<td>1時間につき</td>
<td>13,750</td>
</tr>
<tr>
<td></td>
<td>樹脂加工試験機による加工試験</td>
<td>1時間につき</td>
<td>6,000</td>
</tr>
<tr>
<td></td>
<td>压縮成型プレス試験</td>
<td>1時間につき</td>
<td>5,190</td>
</tr>
<tr>
<td></td>
<td>エンボス試験</td>
<td>1時間につき</td>
<td>4,240</td>
</tr>
<tr>
<td></td>
<td>熱カレンダー加工試験</td>
<td>1時間につき</td>
<td>2,770</td>
</tr>
<tr>
<td></td>
<td>紙の手加工試験</td>
<td>1時間につき</td>
<td>2,490</td>
</tr>
<tr>
<td></td>
<td>超音波アトマイザーによる加工試験</td>
<td>1時間につき</td>
<td>6,250</td>
</tr>
<tr>
<td>設計図料</td>
<td>A2判</td>
<td>1件 (1枚)につき</td>
<td>18,240</td>
</tr>
<tr>
<td></td>
<td>成績書の贈本又は証明書</td>
<td>1通につき</td>
<td>560</td>
</tr>
<tr>
<td>区分</td>
<td>種別</td>
<td>別</td>
<td>単位</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>原料処理機器</td>
<td>1kgホーレンダー型ビーター</td>
<td>1台1時間につき</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>8kgホーレンダー型ビーター</td>
<td>1台1時間につき</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>38kgホイト型ビーター</td>
<td>1台1時間につき</td>
<td>1,410</td>
</tr>
<tr>
<td></td>
<td>1kgナギナタ型ビーター</td>
<td>1台1時間につき</td>
<td>590</td>
</tr>
<tr>
<td></td>
<td>10kgナギナタ型ビーター</td>
<td>1台1時間につき</td>
<td>620</td>
</tr>
<tr>
<td></td>
<td>スクリーン</td>
<td>1台1時間につき</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>セントリクリーナー</td>
<td>1台1時間につき</td>
<td>650</td>
</tr>
<tr>
<td></td>
<td>蒸解用オートクレープ</td>
<td>1台1時間につき</td>
<td>1,020</td>
</tr>
<tr>
<td></td>
<td>地球釜</td>
<td>1台1時間につき</td>
<td>3,070</td>
</tr>
<tr>
<td></td>
<td>粉砕機</td>
<td>1台1時間につき</td>
<td>1,340</td>
</tr>
<tr>
<td></td>
<td>オゾン水実験装置</td>
<td>1台1時間につき</td>
<td>2,400</td>
</tr>
<tr>
<td></td>
<td>その他の原料処理機器</td>
<td>1台1時間につき</td>
<td>590</td>
</tr>
<tr>
<td>試験機器</td>
<td>熱風循環式高温炉</td>
<td>1台1時間につき</td>
<td>1,220</td>
</tr>
<tr>
<td></td>
<td>フェードメーター</td>
<td>1台30時間につき</td>
<td>5,660</td>
</tr>
<tr>
<td></td>
<td>フラジール通気度試験機</td>
<td>1台1時間につき</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>偏光顕微鏡</td>
<td>1台1時間につき</td>
<td>640</td>
</tr>
<tr>
<td></td>
<td>パームポロシメーター</td>
<td>1台1時間につき</td>
<td>740</td>
</tr>
<tr>
<td></td>
<td>紙伸縮計</td>
<td>1台1時間につき</td>
<td>610</td>
</tr>
<tr>
<td></td>
<td>横型引張試験機</td>
<td>1台1時間につき</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>白色度計</td>
<td>1台1時間につき</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>印刷適性試験機</td>
<td>1台1時間につき</td>
<td>1,540</td>
</tr>
<tr>
<td></td>
<td>ハンディー圧縮試験機</td>
<td>1台1時間につき</td>
<td>710</td>
</tr>
<tr>
<td></td>
<td>クリーンベンチ</td>
<td>1台1時間につき</td>
<td>660</td>
</tr>
<tr>
<td></td>
<td>織物摩耗試験機</td>
<td>1台1時間につき</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>ショッパー型耐水度試験機</td>
<td>1台1時間につき</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>KES風合い・曲げ試験機</td>
<td>1台1時間につき</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>KES風合い・せん断試験機</td>
<td>1台1時間につき</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>KES風合い・引張試験機</td>
<td>1台1時間につき</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>KES風合い・圧縮試験機</td>
<td>1台1時間につき</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>KES風合い・表面試験機</td>
<td>1台1時間につき</td>
<td>1,100</td>
</tr>
<tr>
<td></td>
<td>ラウンダーメーター</td>
<td>1台1時間につき</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>分光蛍光光度計</td>
<td>1台1時間につき</td>
<td>1,210</td>
</tr>
<tr>
<td></td>
<td>保湿性試験機</td>
<td>1台1時間につき</td>
<td>810</td>
</tr>
<tr>
<td></td>
<td>振動吸収試験機</td>
<td>1台1時間につき</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td>環境総合実験システム</td>
<td>1台1時間につき</td>
<td>1,230</td>
</tr>
<tr>
<td></td>
<td>耐候性試験機加湿システム</td>
<td>1台30時間につき</td>
<td>2,390</td>
</tr>
<tr>
<td></td>
<td>デジタルマイクロスコープ</td>
<td>1台1時間につき</td>
<td>770</td>
</tr>
<tr>
<td></td>
<td>大型滑走式ミクロトーム</td>
<td>1台1時間につき</td>
<td>1,170</td>
</tr>
<tr>
<td></td>
<td>テンション万能試験機</td>
<td>1台1時間につき</td>
<td>1,230</td>
</tr>
<tr>
<td></td>
<td>自動拭き取り装置</td>
<td>1台1時間につき</td>
<td>470</td>
</tr>
<tr>
<td>区分</td>
<td>種別</td>
<td>単位</td>
<td>金額 (円)</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>試験機器</td>
<td>繊維分析計</td>
<td>1台1時間につき</td>
<td>780</td>
</tr>
<tr>
<td></td>
<td>その他の試験機器</td>
<td>1台1時間につき</td>
<td>620</td>
</tr>
<tr>
<td>抄紙加工機</td>
<td>樹脂成型プレス機</td>
<td>1台1時間につき</td>
<td>820</td>
</tr>
<tr>
<td></td>
<td>エンボスマシン</td>
<td>1台1時間につき</td>
<td>1,430</td>
</tr>
<tr>
<td></td>
<td>熱カレンダー</td>
<td>1台1時間につき</td>
<td>1,060</td>
</tr>
<tr>
<td></td>
<td>樹脂加工機</td>
<td>1台1時間につき</td>
<td>2,120</td>
</tr>
<tr>
<td></td>
<td>小型抄紙機</td>
<td>1台1時間につき</td>
<td>6,700</td>
</tr>
<tr>
<td></td>
<td>手すき抄紙室に備え付ける器具</td>
<td>1台1時間につき</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>超音波アトマイザー</td>
<td>1台1時間につき</td>
<td>940</td>
</tr>
<tr>
<td></td>
<td>その他の抄紙加工機</td>
<td>1台1時間につき</td>
<td>570</td>
</tr>
<tr>
<td>分析機器</td>
<td>高速液体クロマトグラフ</td>
<td>1台1時間につき</td>
<td>900</td>
</tr>
<tr>
<td></td>
<td>ガスクロマトグラフ</td>
<td>1台1時間につき</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td>ICP発光分析装置</td>
<td>1台1時間につき</td>
<td>3,730</td>
</tr>
<tr>
<td></td>
<td>熱分析装置</td>
<td>1台1時間につき</td>
<td>990</td>
</tr>
<tr>
<td></td>
<td>分光光度計</td>
<td>1台1時間につき</td>
<td>1,110</td>
</tr>
<tr>
<td></td>
<td>イオンクロマトグラフシステム</td>
<td>1台1時間につき</td>
<td>1,890</td>
</tr>
<tr>
<td></td>
<td>分析走査型電子顕微鏡</td>
<td>1台1時間につき</td>
<td>2,800</td>
</tr>
<tr>
<td></td>
<td>極微弱発光検出分光システム</td>
<td>1台1時間につき</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td>その他の分析機器</td>
<td>1台1時間につき</td>
<td>590</td>
</tr>
<tr>
<td>加算額</td>
<td>電気、水道、付属設備を著しく使用する場合</td>
<td>素費</td>
<td></td>
</tr>
<tr>
<td>施設</td>
<td>研修室[1]</td>
<td>半日につき</td>
<td>6,460</td>
</tr>
<tr>
<td></td>
<td>会議室</td>
<td>半日につき</td>
<td>4,270</td>
</tr>
<tr>
<td></td>
<td>研修室[1]</td>
<td>1日につき</td>
<td>12,930</td>
</tr>
<tr>
<td></td>
<td>会議室</td>
<td>1日につき</td>
<td>8,550</td>
</tr>
</tbody>
</table>
7 所有主要設備

(1)抄紙・原料処理設備

<table>
<thead>
<tr>
<th>設備名</th>
<th>製作所</th>
<th>型式</th>
<th>仕様</th>
<th>入年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>多目的テスト抄紙機</td>
<td>川之江造機㈱</td>
<td>傾斜短網・傾斜短網組合せ式
傾斜角度 : 0～20度
抄紙幅: 550㎜
抄紙速度: 10～200m/min
抄紙坪量: 12～100g/㎡</td>
<td>H. 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>多目的不織布製造装置</td>
<td>川之江造機㈱</td>
<td>開口器2台: 搬住250㎜
開口器2台: 搬住500㎜
カード機2台: 搬住500㎜
ウェットキャップ装置
最高圧力15Mpa
サーマルドライヤー
最高温度200℃
サーマルキャレンダー
最高温度250℃
速度制御システム</td>
<td>H. 6, H. 7, H. 11, H. 17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>駿大昌鉄工所</td>
<td>ウォータージェット処理装置
最大水圧: 10Mpa、最大水量: 66L/min
水門数: 2門</td>
<td>H. 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>大型懸垂抄紙機</td>
<td>駿梅原製作所</td>
<td>短網・傾斜短網組合せ式
抄紙幅: 最大1000㎜
抄紙速度: 5～20m/min
抄紙坪量: 8～160g/㎡
ウェットクリーブ装置
抄紙部カセット化
ダンディーロール
ナギナタ配合装置</td>
<td>H. 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小型傾斜抄紙機</td>
<td>駿大昌鉄工所</td>
<td>順流円網・傾斜短網組合せ式
抄速: 7～15m/min
抄紙幅: 300㎜
傾斜角度: 0～20度
ウォータージェット装置
最高圧力9.8MPa</td>
<td>H. 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>金属ブロアー不織布製造装置</td>
<td>日本ノズル㈱</td>
<td>原料ボリューム:
PE, PP, PET, PLA, PBT, PPS
抄速: 1～100m/min
目付: 5～300g/m²
ウェブ幅: 600㎜
ノズル: φ0.25㎜D×3.0㎜L×0.5㎜P
1,207holes
生産能力: 7.8kg/hr (PP)</td>
<td>H. 23</td>
<td></td>
</tr>
<tr>
<td>設備名</td>
<td>製作所</td>
<td>型式</td>
<td>仕様</td>
<td>導入年度</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>----------------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>エレクトロスピニング装置</td>
<td>カトーテック㈱</td>
<td></td>
<td>ノズル方式(エアー・アシスト方式)</td>
<td>H. 23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>直流高圧電源: 0～50kV</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>基材幅:約300～600mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>基材直径:最大300mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>溶液タンク容量: 2 L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ノズル本数: 8 本</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>溶液吐出量: 0.02～1.5ml/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>基材送り速度: 0.2～6 m/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ターゲット・シリンジ間距離: 約1,500mm</td>
<td></td>
</tr>
<tr>
<td>サンプルローラーカード</td>
<td>大和機工㈱</td>
<td>SC-300DR</td>
<td>ウェブシート寸法: 900×300mm</td>
<td>H. 2</td>
</tr>
<tr>
<td>多目的テスト抄紙機</td>
<td>東鋼大昌工所</td>
<td></td>
<td>バルバー: 2m³</td>
<td>H. 6</td>
</tr>
<tr>
<td>原料調整設備</td>
<td></td>
<td></td>
<td>セントリクリーナー</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>D D R: 75km × 6 P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>サイクリングタンク</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>配合ポーチー、マシンチェスト</td>
<td></td>
</tr>
<tr>
<td>大型懸垂短網抄紙機</td>
<td>東鋼大昌工所</td>
<td></td>
<td>バケットチェスト、振動スクリーン、</td>
<td>H. 6</td>
</tr>
<tr>
<td>原料調整設備</td>
<td></td>
<td></td>
<td>スーパークロン、セントリクリーナー、</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>インクラインドロールプレス</td>
<td></td>
</tr>
<tr>
<td>多目的抄紙機</td>
<td>東鋼梅原製作所</td>
<td></td>
<td>上網(14メッシュ)</td>
<td>H. 11</td>
</tr>
<tr>
<td>円網シンクダー</td>
<td></td>
<td></td>
<td>下網(80メッシュ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>外寸: φ1220mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>幅: 650mm</td>
<td></td>
</tr>
<tr>
<td>小型抄紙機</td>
<td>東鋼梅原製作所</td>
<td></td>
<td>上網(14メッシュ)</td>
<td>H. 11</td>
</tr>
<tr>
<td>円網シンクダー</td>
<td></td>
<td></td>
<td>下網(80メッシュ)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>外寸: φ655mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>幅: 400mm</td>
<td></td>
</tr>
<tr>
<td>回転蒸解缶（地球釜）</td>
<td>羽田鉄工所</td>
<td></td>
<td>内容積: 1.2m³、最高圧力: 14㎏/cm²</td>
<td>S. 46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>原料処理量: 約300㎏</td>
<td></td>
</tr>
<tr>
<td>蒸解用オートクレープ</td>
<td>坂本鉄工所</td>
<td></td>
<td>加熱方式: 蒸気</td>
<td>H. 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>有効容積: 120 L</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>最高圧力: 15kg/cm²</td>
<td></td>
</tr>
<tr>
<td>フラットスクリーン</td>
<td>東鋼梅原製作所</td>
<td></td>
<td>振動式スクリーンプレート</td>
<td>H. 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>; 7/1000in</td>
<td></td>
</tr>
<tr>
<td>遠心脱水機</td>
<td>国産遠心機㈱</td>
<td>H-130-B</td>
<td></td>
<td>S. 58</td>
</tr>
<tr>
<td>叩解度試験機</td>
<td>東洋テスター㈱</td>
<td>ショッパー型</td>
<td>JISP8121に対応</td>
<td>S. 62</td>
</tr>
<tr>
<td>水度試験機</td>
<td>東洋テスター㈱</td>
<td>カナディアン型</td>
<td>JISP8121に対応</td>
<td>S. 62</td>
</tr>
<tr>
<td>バルブ保水度測定用遠心分離器</td>
<td>熊谷理機工業㈱</td>
<td>RF-051N</td>
<td>最高回転数: 4700rpm</td>
<td>H. 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>最大遠心力: 3020×g</td>
<td></td>
</tr>
<tr>
<td>手すき道具一式</td>
<td>節竹、漉槽、圧搾機</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>小野打カッター</td>
<td>小野打製作所</td>
<td>DL-150</td>
<td></td>
<td>S. 57</td>
</tr>
<tr>
<td>大型打解機</td>
<td>東鋼大昌工所</td>
<td></td>
<td></td>
<td>H. 6</td>
</tr>
<tr>
<td>原料煮熟釜</td>
<td>大釜:約30kg 中釜:約10kg 小釜:約3kg</td>
<td></td>
<td></td>
<td>S. 54</td>
</tr>
<tr>
<td>回転蒸解缶</td>
<td>東洋テスター㈱</td>
<td></td>
<td>電気式(ヒーター)回転型</td>
<td>S. 54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>原料処理量: 約400g</td>
<td></td>
</tr>
</tbody>
</table>

— 11 —
<table>
<thead>
<tr>
<th>設備名</th>
<th>製作所</th>
<th>形式</th>
<th>仕様</th>
<th>導入年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>ナギナタビーター</td>
<td>㈱梅原製作所</td>
<td>容量: 1kg、2kg</td>
<td>S.42</td>
<td></td>
</tr>
<tr>
<td>ホレンダービーター</td>
<td>㈱梅原製作所</td>
<td>容量: 1kg、4kg、8kg、10kg</td>
<td>S.42、H.6、H.11</td>
<td></td>
</tr>
<tr>
<td>ナイアガラビーター</td>
<td>熊谷理機工業㈱</td>
<td>TAPPI標準型</td>
<td>ベッドプレート: 厚さ3.2㎜、幅43㎜ ロール: 直径194㎜ 面長: 152㎜ 回転数: 500rpm 標準処理量: 約360g</td>
<td>S.54</td>
</tr>
<tr>
<td>バルブ標準離解機</td>
<td>㈱東洋精機</td>
<td>TAPPI標準、JIS対応</td>
<td>S.55</td>
<td></td>
</tr>
<tr>
<td>円型シートマシン</td>
<td>㈱東洋精機製作所</td>
<td>作成シートの大きさ: 160㎜ 金網: 150メッシュ</td>
<td>S.49</td>
<td></td>
</tr>
<tr>
<td>角型シートマシン</td>
<td>熊谷理機工業㈱</td>
<td>作成シートの大きさ: 25cm角</td>
<td>S.55</td>
<td></td>
</tr>
<tr>
<td>自動クーチング装置付き角型シートマシン</td>
<td>熊谷理機工業㈱</td>
<td>作成シートの大きさ: 25cm角 コーチング回数: 5回 コーチング速度: 20cm/sec</td>
<td>H.7</td>
<td></td>
</tr>
<tr>
<td>高性能ミキサー</td>
<td>㈱エーテックジャパン</td>
<td>Distromix B DB60-H</td>
<td>ローターステーター式攪拌装置 バッチ処理量: 1.0〜20㍑ 最大回転数: 3,000rpm</td>
<td>H.17</td>
</tr>
<tr>
<td>超微粒磨碎機</td>
<td>増幸産業㈱</td>
<td>セン・ミ MKCA6-2</td>
<td>グラインダー: MKE6-46(標準溝) 砥石直径: φ150㎜(6インチ)</td>
<td>H.19</td>
</tr>
<tr>
<td>プレ脱水装置</td>
<td>㈱大阪ジャッキ製作所</td>
<td>KPB-10 E-10S-25 TWA0.7</td>
<td>ジャッキプレス E型パワージャッキ 手動ポンプ</td>
<td>H.21</td>
</tr>
<tr>
<td>高速スタンプミル</td>
<td>日陶科学㈱</td>
<td>ANS-143PL</td>
<td>うす寸法: φ143㎜ うす材質:ステンレス ケミー素材:ステンレス ストローク:60mm 120rpm</td>
<td>H.21</td>
</tr>
<tr>
<td>設備名</td>
<td>製作所</td>
<td>型式</td>
<td>仕様</td>
<td>導入年度</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>テストコート&ラミネーター</td>
<td>岡崎機械工業㈱</td>
<td>TC/DL-700S</td>
<td>高速：3~60m/min
加工巾：500mm（最大650mm）
グラビアコート
ス字トップコート
ダイコート
スプレーコート
ディップ式コート
ウェットラミネート
ドライラミネート
計測制御システム</td>
<td>H.6
H.8
H.11
H.12
H.23</td>
</tr>
<tr>
<td>樹脂加工機</td>
<td>島村機械工業㈱</td>
<td>TC/DL-700S</td>
<td>高速：3~60m/min
加工巾：500mm（最大650mm）
グラビアコート
ス字トップコート
ダイコート
スプレーコート
ディップ式コート
ウェットラミネート
ドライラミネート
計測制御システム</td>
<td>H.6
H.8
H.11
H.12
H.23</td>
</tr>
<tr>
<td>树脂成形プレス</td>
<td>余田機械工業㈱</td>
<td>富士デジタルスタンダード型</td>
<td>裁断幅：1015mm</td>
<td>H.6</td>
</tr>
<tr>
<td>粉砕機</td>
<td>ターボ工業㈱</td>
<td>T250-4J</td>
<td>粉砕室内径：φ250mm
回転数：4000〜10000rpm</td>
<td>H.8</td>
</tr>
<tr>
<td>熱ケーキナー</td>
<td>熊谷理機工業㈱</td>
<td>AWFA-37</td>
<td>最高使用圧力：210kgf/cm²
成形寸法：355×305mm
常用使用温度：200℃</td>
<td>H.5</td>
</tr>
<tr>
<td>全自動プレス</td>
<td>㈱勝賀瀬鉄工</td>
<td>HP-54A</td>
<td>最大加圧力：500kg/cm²
最高温度：220℃
加圧時間：0〜30sec
プレス寸法：500×400mm</td>
<td>H.6</td>
</tr>
<tr>
<td>全自動プレス</td>
<td>㈱勝賀瀬鉄工</td>
<td>HP-54A</td>
<td>最大加圧力：500kg/cm²
最高温度：220℃
加圧時間：0〜30sec
プレス寸法：500×400mm</td>
<td>H.6</td>
</tr>
<tr>
<td>熱風循環式高温炉</td>
<td>旭科学㈱</td>
<td>EM-600</td>
<td>許容容量：12〜250g/㎡
最大幅：1000mm
巻取り最大径：700mm</td>
<td>H.3</td>
</tr>
<tr>
<td>全自動プレス</td>
<td>㈱西村製作所</td>
<td>TB-2A型</td>
<td>材料巾：550mm〜250mm
材料最大径：φ600mm</td>
<td>H.13</td>
</tr>
<tr>
<td>燃丝装置</td>
<td>金生機械工業㈱</td>
<td>NS-M型</td>
<td>燃丝巾900mm</td>
<td>H.13</td>
</tr>
<tr>
<td>超音波アトマイザー</td>
<td>レヒラー社</td>
<td>US-1</td>
<td>乾燥：max 1L/h
粒子径：10〜30μm
噴霧角度：30°</td>
<td>H.21</td>
</tr>
<tr>
<td>送液ポンプシステム</td>
<td>コール・バーマー社</td>
<td>マスターフレックスL/S</td>
<td>流量：0.06〜2300ml/min</td>
<td>H.21</td>
</tr>
<tr>
<td>設備名</td>
<td>製作所</td>
<td>型式</td>
<td>仕様</td>
<td>導入年度</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>生物顕微鏡</td>
<td>㈱ニコン</td>
<td>80iF-21-1</td>
<td>倍率：×4、×10、×20 ダブルポート装置付属</td>
<td>H.17</td>
</tr>
<tr>
<td>生物顕微鏡蛍光装置</td>
<td>㈱ニコン</td>
<td>U-Epi</td>
<td></td>
<td>H.21</td>
</tr>
<tr>
<td>万能投影機</td>
<td>㈱ニコン</td>
<td>V-12</td>
<td>倍率：×20、×100、×200 透過光及び反射光切替可能</td>
<td>H.元</td>
</tr>
<tr>
<td>偏光顕微鏡</td>
<td>㈱ニコン</td>
<td>オプチフォト2</td>
<td>倍率：×4、×10、×40、×100 写真撮影装置付属</td>
<td>H.6</td>
</tr>
<tr>
<td>生物顕微鏡</td>
<td>㈱ニコン</td>
<td>オプチフォト2</td>
<td>倍率：×4、×10、×40、×100 マルチテープニング装置付属 顕微鏡カラーテレビ装置付属 カラーメジャーユニット付属</td>
<td>H.6</td>
</tr>
<tr>
<td>実体顕微鏡</td>
<td>㈱ニコン</td>
<td></td>
<td></td>
<td>H.元</td>
</tr>
<tr>
<td>顕微鏡デジタルカメラ</td>
<td>㈱ニコン</td>
<td>DS-5M-L1</td>
<td>スタンドアロンタイプコント ロールユニット</td>
<td>H.17</td>
</tr>
<tr>
<td>デジタルマイクロハイスコープ</td>
<td>㈱ハイロックス</td>
<td>KH-7700</td>
<td>レンズ倍率：等倍～7,000倍 撮影素子：211万画素</td>
<td>H.21</td>
</tr>
<tr>
<td>分析走査型電子顕微鏡</td>
<td>日本電子㈱</td>
<td>JSM-6510A / JED-2300</td>
<td>走査電子顕微鏡 倍率：×5 ～ ×300,000 二次電子分解能： 3.0nm以上（加速電圧30kV） 8.0nm以上（加速電圧3kV） X線分析装置 検出可能元素：Be～U</td>
<td>H.21</td>
</tr>
<tr>
<td>大型滑走式ミクロトーム</td>
<td>大和光機工業㈱</td>
<td>REM-710-N</td>
<td>上下動距離：40mm 薄切目盛範囲：0 ～ 120μm</td>
<td>H.21</td>
</tr>
<tr>
<td>分光蛍光光度計</td>
<td>㈱日立製作所</td>
<td>F-4500</td>
<td>光源：150Xeランプ 分解：1.0nm 分光器：無収束四面折射干渉格子900L/m 測定波長範囲：EX, EM200～730nm</td>
<td>H.10</td>
</tr>
<tr>
<td>ICP発光分析装置</td>
<td>㈱パーキンエルマー</td>
<td>OPTIMA3000</td>
<td></td>
<td>H.7</td>
</tr>
<tr>
<td>フーリエ変換赤外分光光度計（F T - I R）</td>
<td>㈱島津製作所</td>
<td>IRAffinit y-1</td>
<td>波数領域：400～40cm⁻¹ 光学系：シングルビーム方式 検出器：高感度検出器(DLATGS) 干渉計：90°入射マイケルソン干渉計 S／N：26,000:1以上</td>
<td>H.24</td>
</tr>
<tr>
<td>紫外・可視・近赤外分光光度計</td>
<td>㈱島津製作所</td>
<td>UV-3600</td>
<td>測定波長範囲：185～3300nm 分解：0.1nm</td>
<td>H.20</td>
</tr>
<tr>
<td>高速液体クロマトグラフシステム</td>
<td>日製産業㈱</td>
<td>L-6000</td>
<td>検出器：UV-VIS検出器、195～700nm 示差屈折率検出器、電導度検出器</td>
<td>S.63</td>
</tr>
<tr>
<td>イオンクロマトグラフシステム</td>
<td>日本ダイオネックス㈱</td>
<td>ICS-900</td>
<td>レンジ範囲：0 ～ 10,000μs 測定対象：フッ化物イオン、塩素酸イオン、塩酸酸イオン、硫酸酸イオン、塩素イオン、硝酸イオン、亜硝酸イオン、リン酸イオン、硫酸イオン等</td>
<td>H.21</td>
</tr>
<tr>
<td>設備名</td>
<td>製作所</td>
<td>型式</td>
<td>仕様</td>
<td>導入年度</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>熱分析装置</td>
<td>藤島製作所</td>
<td>DSC-60</td>
<td>温度範囲：常温～600℃</td>
<td>H.15</td>
</tr>
<tr>
<td>ポータブル水質分析計</td>
<td>ハック社</td>
<td>DR890</td>
<td>吸光度範囲：0 ～ 2ABS</td>
<td>H.22</td>
</tr>
<tr>
<td>繊維分析計</td>
<td>ローレンツェンアンドベッテリー㈱</td>
<td>ファイバーテスター</td>
<td>測定範囲 繊維長：0.01～7.5mm</td>
<td>H.23</td>
</tr>
<tr>
<td>自動滴定装置</td>
<td>東亜ディーケーポイント</td>
<td>AUT-701</td>
<td>検出方式：シングルフォトンカウンティング法（単一光子係数法）</td>
<td>H.23</td>
</tr>
<tr>
<td>極微弱発光検出分光システム</td>
<td>東北電子産業㈱</td>
<td>R12704/R340A</td>
<td>検出波長域：300～850nm（最高感度波長420nm）</td>
<td>H.5</td>
</tr>
<tr>
<td>表面体積抵抗率測定機</td>
<td>熊谷理機工業(㈱)</td>
<td>HP型</td>
<td>测定空気量：10ccまたは1cc</td>
<td>H.25</td>
</tr>
<tr>
<td>ベック平滑度試験機</td>
<td>熊谷理機工業(㈱)</td>
<td>No.115</td>
<td></td>
<td>H.25</td>
</tr>
<tr>
<td>動的透過性試験機</td>
<td>熊谷理機工業(㈱)</td>
<td>No.115</td>
<td>試験片寸法：幅25mm, 長さ1000mm円板の速度：15m/min以下</td>
<td>H.25</td>
</tr>
<tr>
<td>フラジール通気度試験機</td>
<td>熊谷理機工業(㈱)</td>
<td>AP-360</td>
<td>測定範囲：0.3～390cc/cm²/sec</td>
<td>H.6</td>
</tr>
<tr>
<td>通気性試験機</td>
<td>カトーテック㈱</td>
<td>KES-FS-API</td>
<td>圧力センサー半導体差圧ゲージ型</td>
<td>H.6</td>
</tr>
<tr>
<td>ハンディー圧縮試験器</td>
<td>カトーテック㈱</td>
<td>KES-G5</td>
<td>検出器：リング状力計</td>
<td>H.21</td>
</tr>
<tr>
<td>バームボロメーター</td>
<td>POROUS MATERIALS INC.</td>
<td>4.25cm</td>
<td></td>
<td>H.6</td>
</tr>
<tr>
<td>クラーク柔軟度試験機</td>
<td>熊谷理機工業㈱</td>
<td>108</td>
<td>回転速度：90 /15sec</td>
<td>S.59</td>
</tr>
<tr>
<td>複合印刷適性試験機</td>
<td>熊谷理機工業㈱</td>
<td>2277</td>
<td>ダイレクトグラビア印刷</td>
<td>H.6</td>
</tr>
<tr>
<td>設備名</td>
<td>製作所</td>
<td>型式</td>
<td>仕様</td>
<td>導入年度</td>
</tr>
<tr>
<td>-------------</td>
<td>----------------------</td>
<td>-------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>IGT印刷適性試験機</td>
<td>熊谷理機工業㈱</td>
<td></td>
<td>印刷方法：振子法、スプリング法</td>
<td>S.58</td>
</tr>
<tr>
<td>紙伸縮計</td>
<td>㈱安田精機製作所</td>
<td>309</td>
<td>チャック間隔：0〜100mm可変</td>
<td>H.6</td>
</tr>
<tr>
<td>テンション万能試験機</td>
<td>㈱エー・アンド・デイ</td>
<td>RTF-1310</td>
<td>最大荷重容量：1t</td>
<td>H.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ロードセル：50N、250N、1kN、1t</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>クロスヘッド速度範囲：0.0005〜1,000mm/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>クロスヘッドストローク：1,100mm</td>
<td></td>
</tr>
<tr>
<td>引きはがし抵抗測定装置</td>
<td>ミネベア㈱</td>
<td>LTS-500N-S100</td>
<td>ロードセル：定格容量500N 90°剝離試験治具</td>
<td>H.19</td>
</tr>
<tr>
<td>引裂度試験機</td>
<td>㈱東洋精機製作所</td>
<td>ユルトロ型</td>
<td>デジタル表示、エアーチャック使用</td>
<td>H.6</td>
</tr>
<tr>
<td>軽荷重重引裂度試験機</td>
<td>熊谷理機工業㈱</td>
<td>シルトロ型</td>
<td>直線範囲：0〜33g</td>
<td>H.6</td>
</tr>
<tr>
<td>破裂度試験機</td>
<td>㈱東洋精機製作所</td>
<td>ミューレン破裂試験器</td>
<td>検定範囲：0〜2000KPa</td>
<td>H.22</td>
</tr>
<tr>
<td>M I T 耐折度試験機</td>
<td>熊谷理機工業㈱</td>
<td>2015-MR</td>
<td>紙引がし荷重：0.5〜1.5kg</td>
<td>H.6</td>
</tr>
<tr>
<td>自動昇降式紙厚計</td>
<td>熊谷理機工業㈱</td>
<td>TM500</td>
<td>つかみ回転速度：175±10rpm</td>
<td>H.6</td>
</tr>
<tr>
<td>ハイトゲージ</td>
<td>㈱ミツトヨ</td>
<td>HDS-H60C</td>
<td>設定範囲：0〜600mm</td>
<td>H.22</td>
</tr>
<tr>
<td>ガーレンデンソメーター</td>
<td>㈱東洋精機製作所</td>
<td>158</td>
<td>空気透過量：最大350ml</td>
<td>H.6</td>
</tr>
<tr>
<td>白色度計</td>
<td>日本電色㈱</td>
<td>PF-10</td>
<td>空気透過量：最大350ml</td>
<td>H.6</td>
</tr>
<tr>
<td>印象アナライザー</td>
<td>本体：東洋紡 (株) 解析：三谷商事㈱</td>
<td>V-10 WinRoOF</td>
<td>画像メモリ：512×400画素×8ビット×12画面</td>
<td>H.6</td>
</tr>
<tr>
<td>色彩差計</td>
<td>㈱ミノルタ</td>
<td>CR-200</td>
<td></td>
<td>H.3</td>
</tr>
<tr>
<td>変角光沢計</td>
<td>日本電色㈱</td>
<td>VGS-1001DP</td>
<td></td>
<td>H.元</td>
</tr>
<tr>
<td>ハンドル-Oメーター</td>
<td>熊谷理機工業㈱</td>
<td></td>
<td></td>
<td>S.53</td>
</tr>
<tr>
<td>段ボール圧縮試験機</td>
<td>日本理学工業㈱</td>
<td>SAC</td>
<td>最大容量：5トン</td>
<td>S.44</td>
</tr>
</tbody>
</table>

—16—
<table>
<thead>
<tr>
<th>設備名</th>
<th>製作所</th>
<th>型式</th>
<th>仕様</th>
<th>導入年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>高圧破裂度試験機</td>
<td>日本理学工業㈱</td>
<td>ミューレン型</td>
<td>最高圧力：45㎏/cm²、自動クランプ</td>
<td>S.56</td>
</tr>
<tr>
<td>フェードメーター</td>
<td>コン・フォ・メ・グラ社（ジャスコインタナショナル㈱）</td>
<td>ソーラーボックス1500e</td>
<td>光源：空冷式キセノンランプ1500W 試験室面積：280×200mm 照射面積：250〜1000W/m² (300〜800nm計測)</td>
<td>H.18</td>
</tr>
<tr>
<td>耐候性試験機加湿システム</td>
<td>コン・フォ・メ・グラ社（ジャスコインタナショナル㈱）</td>
<td></td>
<td>最高湿度：40℃ 80%</td>
<td>H.20</td>
</tr>
<tr>
<td>恒温恒湿装置</td>
<td>タバイ</td>
<td>PR-3GM</td>
<td>湿度範囲：20〜100℃ 湿度範囲：30〜98％RH 内容量：60×85×80cm</td>
<td>S.59</td>
</tr>
<tr>
<td>インキュベーター</td>
<td>サンヨー㈱</td>
<td>MIR-152</td>
<td>湿度範囲：10〜50℃ 湿度範囲：105℃〜121℃</td>
<td>H.元</td>
</tr>
<tr>
<td>オートクレーブ</td>
<td>サンヨー㈱</td>
<td>CAT-125</td>
<td>濃度：105℃〜121℃</td>
<td>H.5</td>
</tr>
<tr>
<td>クリーンベンチ</td>
<td>サンヨー㈱</td>
<td>MCV-13BSF</td>
<td></td>
<td>H.6</td>
</tr>
<tr>
<td>冷却遠心器</td>
<td>㈱日立製作所</td>
<td>CF-TDS</td>
<td></td>
<td>H.7</td>
</tr>
<tr>
<td>オゾン水実験装置</td>
<td>荏原実業㈱</td>
<td></td>
<td>溫水冷式オゾン発生器 酸素ガス発生装置(P.S.A) UV式溶存オゾン生成気液混合ポンプ 製造オゾン水濃度：5mg/L以上（ワンパス流路）10mg/L以上（循環流路）</td>
<td>H.21</td>
</tr>
<tr>
<td>純水/超純水製造装置</td>
<td>日本ミリポア㈱</td>
<td>Elix Advanage 5 Simplicity UV</td>
<td>純水製造装置 超純水製造装置</td>
<td>H.22</td>
</tr>
<tr>
<td>不織布風合い計測システム</td>
<td>カトーテック㈱</td>
<td>KES-FB1</td>
<td>引張り・せん断試験機</td>
<td>H.10</td>
</tr>
<tr>
<td>テーバー型織物摩耗試験機</td>
<td>㈱大栄科学精器製作所</td>
<td>DTB-50</td>
<td>表面試験機</td>
<td>H.8</td>
</tr>
<tr>
<td>カストム式織物摩耗試験機</td>
<td>㈱大栄科学精器製作所</td>
<td>CAT-125</td>
<td>往復摩擦台距離：25cm 往復摩擦台速度：125±5回/分 ゴム膜、空気圧：0.5㎏/cm² JIS L-1906、L-1096対応</td>
<td>H.8</td>
</tr>
<tr>
<td>マーチンデール摩耗試験機</td>
<td>㈱大栄科学精器製作所</td>
<td>403</td>
<td>往復摩耗試験機対応</td>
<td>H.10</td>
</tr>
<tr>
<td>往復摩耗試験システム</td>
<td>新東科学㈱</td>
<td>TYPE:30S</td>
<td>移動距離：10〜50mm 移動速度：30〜12,000mm/分 試料台寸法：180mm×120mm ASTM平面圧子、30㎜平面圧子 ロールホルダー、ブレードホルダー</td>
<td>H.22</td>
</tr>
<tr>
<td>設備名称</td>
<td>製作所</td>
<td>型式</td>
<td>仕様</td>
<td>導入年度</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>スニーカー型耐水度試験機</td>
<td>㈱大栄科学精器製作所</td>
<td>WR-1600DM</td>
<td>JIS L-1092耐水度試験対応</td>
<td>H.10</td>
</tr>
<tr>
<td>保温性試験機</td>
<td>㈱大栄科学精器製作所</td>
<td>ASTM型（恒温法）</td>
<td>衣料素材、ふとん、敷物、カーテン、建築資材類の保温性能を評価する</td>
<td>H.10</td>
</tr>
<tr>
<td>燃焼速度試験器</td>
<td>㈱大栄科学精器製作所</td>
<td>HFT-30</td>
<td>JIS L-1091C法対応</td>
<td>H.10</td>
</tr>
<tr>
<td>湿式テストはっ水度試験機</td>
<td>㈱大栄科学精器製作所</td>
<td>SR-1</td>
<td>JIS L-1092はっ水度試験対応</td>
<td>H.10</td>
</tr>
<tr>
<td>ラウンダーメータ</td>
<td>㈱大栄科学精器製作所</td>
<td>L-8</td>
<td>不織布、繊維製品の水及び洗濯に対する堅牢度の測定</td>
<td>H.11</td>
</tr>
<tr>
<td>環境総合実験システム</td>
<td>カトーテック㈱</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>電気炉</td>
<td>ヤマト科学㈱</td>
<td>F0-710</td>
<td>使用温度範囲：100～1150℃</td>
<td>H.16</td>
</tr>
<tr>
<td>少量棚式チャンバー</td>
<td>東京理化器械㈱</td>
<td>FDU-1100, DRC-1N</td>
<td>トランプ温度：-45℃ 試料棚サイズ：W200mm×D230mm 2段</td>
<td>H.17</td>
</tr>
</tbody>
</table>
Ⅱ 業務概要
1 試験研究・技術支援事業

<table>
<thead>
<tr>
<th>研究課題</th>
<th>項目</th>
<th>研究課</th>
<th>手当科目</th>
</tr>
</thead>
<tbody>
<tr>
<td>製紙スラッジの有効活用に関する研究</td>
<td>一般研究費</td>
<td>製紙技術課</td>
<td></td>
</tr>
<tr>
<td>柔らかさとふき取り性をさらに向上させた衛生用紙の開発</td>
<td>一般研究費</td>
<td>製紙技術課</td>
<td></td>
</tr>
<tr>
<td>「安全」と「環境」に適応した次世代型機能性シテリア紙製品の開発研究</td>
<td>特別研究費</td>
<td>製紙技術課</td>
<td></td>
</tr>
<tr>
<td>土佐和紙の品質向上研究</td>
<td>特別研究費</td>
<td>製紙技術課</td>
<td></td>
</tr>
<tr>
<td>多環芳香族炭化水素除去フィルター用基材の開発</td>
<td>特別研究費</td>
<td>製紙技術課</td>
<td></td>
</tr>
<tr>
<td>文化財補修用竹紙製造法の確立</td>
<td>技術支援事業費</td>
<td>製紙技術課</td>
<td></td>
</tr>
<tr>
<td>大気汚染測定用ダストフィルターの開発</td>
<td>成長分野育成研究費</td>
<td>製紙技術課</td>
<td></td>
</tr>
<tr>
<td>アロマテラピー不織布による高齢者介護用シートの開発</td>
<td>成長分野育成研究費</td>
<td>不織布・加工課</td>
<td></td>
</tr>
<tr>
<td>食品加工用フィルター材料の開発</td>
<td>成長分野育成研究費</td>
<td>不織布・加工課</td>
<td></td>
</tr>
</tbody>
</table>

2 技術相談及び技術指導

(1) 技術相談

<table>
<thead>
<tr>
<th>項目</th>
<th>件数</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>原質調整</td>
<td>951</td>
<td>紙料の叩解、配合</td>
</tr>
<tr>
<td>抄紙加工技術</td>
<td>953</td>
<td>機能紙の抄造、含浸加工</td>
</tr>
<tr>
<td>紙の生産管理技術</td>
<td>968</td>
<td>抄紙合理化、品質向上</td>
</tr>
<tr>
<td>設備改善、設計</td>
<td>199</td>
<td>抄紙設備、加工機</td>
</tr>
<tr>
<td>省エネルギー技術</td>
<td>50</td>
<td>蒸気管理、節電</td>
</tr>
<tr>
<td>公害防止技術</td>
<td>66</td>
<td>排水処理</td>
</tr>
<tr>
<td>計</td>
<td>3,187</td>
<td></td>
</tr>
</tbody>
</table>

(2) 主な技術指導

<table>
<thead>
<tr>
<th>担当課</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>不織布・加工課</td>
<td>流せるトイレクリーナーの試験について</td>
</tr>
<tr>
<td></td>
<td>磨耗性試験について</td>
</tr>
<tr>
<td></td>
<td>柔らかさの試験について</td>
</tr>
<tr>
<td></td>
<td>紙おむつの pH 試験</td>
</tr>
<tr>
<td>製紙技術課</td>
<td>製紙会社の排水対策について</td>
</tr>
<tr>
<td></td>
<td>和紙の建材用途開発について</td>
</tr>
<tr>
<td></td>
<td>湿式不織布について</td>
</tr>
<tr>
<td></td>
<td>抄紙用染料について</td>
</tr>
</tbody>
</table>
3 依頼試験及び設備使用

(1) 依頼試験

<table>
<thead>
<tr>
<th>年度</th>
<th>件数</th>
<th>手数料(千円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>2,508</td>
<td>10,573</td>
</tr>
<tr>
<td>18</td>
<td>2,710</td>
<td>13,033</td>
</tr>
<tr>
<td>19</td>
<td>3,103</td>
<td>13,824</td>
</tr>
<tr>
<td>20</td>
<td>2,941</td>
<td>12,733</td>
</tr>
<tr>
<td>21</td>
<td>3,605</td>
<td>14,849</td>
</tr>
<tr>
<td>22</td>
<td>3,110</td>
<td>13,410</td>
</tr>
<tr>
<td>23</td>
<td>2,843</td>
<td>11,477</td>
</tr>
<tr>
<td>24</td>
<td>3,294</td>
<td>12,505</td>
</tr>
</tbody>
</table>

(2) 設備使用

<table>
<thead>
<tr>
<th>年度</th>
<th>件数</th>
<th>使用料(千円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>893</td>
<td>594</td>
</tr>
<tr>
<td>18</td>
<td>1,208</td>
<td>1,131</td>
</tr>
<tr>
<td>19</td>
<td>968</td>
<td>862</td>
</tr>
<tr>
<td>20</td>
<td>759</td>
<td>500</td>
</tr>
<tr>
<td>21</td>
<td>1,189</td>
<td>769</td>
</tr>
<tr>
<td>22</td>
<td>836</td>
<td>719</td>
</tr>
<tr>
<td>23</td>
<td>836</td>
<td>475</td>
</tr>
<tr>
<td>24</td>
<td>719</td>
<td>371</td>
</tr>
</tbody>
</table>

4 開放試験設備利用研修事業

<table>
<thead>
<tr>
<th>開催日</th>
<th>設備名</th>
<th>練了者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成24年7月31日</td>
<td>ハンディ圧縮試験機、通気性試験機、摩擦感テスター</td>
<td>1</td>
</tr>
<tr>
<td>平成25年2月7日</td>
<td>繊維分析計</td>
<td>4</td>
</tr>
<tr>
<td>平成25年2月21日</td>
<td>極微弱発光検出分光システム</td>
<td>1</td>
</tr>
<tr>
<td>平成25年3月25日</td>
<td>フーリエ変換赤外分光光度計</td>
<td>3</td>
</tr>
</tbody>
</table>

5 紙産業技術初任者研修会

<table>
<thead>
<tr>
<th>開催日</th>
<th>内容</th>
<th>参加者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成24年10月25日</td>
<td>紙の話及び製紙工程と環境等の法規制（座学）</td>
<td></td>
</tr>
<tr>
<td></td>
<td>センター見学</td>
<td>17</td>
</tr>
<tr>
<td>平成24年11月22日</td>
<td>乾式不織布に用いる繊維と不織布の種類（座学）</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>紙及び不織布の加工方法（座学）</td>
<td></td>
</tr>
<tr>
<td>平成25年1月11日</td>
<td>原料のろ水度測定とシートマシン抄紙試作（実習）</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>乾式不織布製造試作及び原料処理と小型抄紙試作（実習）</td>
<td></td>
</tr>
<tr>
<td>平成25年1月18日</td>
<td>紙及び不織布の物性試験と繊維組成分析（実習）</td>
<td>11</td>
</tr>
<tr>
<td>平成25年2月8日</td>
<td>経営者、専門家による講演</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>ディスカッション</td>
<td></td>
</tr>
</tbody>
</table>
6 紙産業中核人材育成講座「不織布製造試験実習」

<table>
<thead>
<tr>
<th>開催日</th>
<th>内容</th>
<th>参加者数</th>
</tr>
</thead>
</table>
| 平成24年6月28日 | • 小型カード機及び多目的不織布製造装置を使用した不織布製造実習
 • 不織布の物性試験実習 | 14 |
| 平成24年6月29日 | • 小型カード機及び多目的不織布製造装置を使用した不織布製造実習
 • 不織布の物性試験実習 | 14 |
| 平成24年6月30日 | • 不織布の物性試験実習
 • 実習結果発表及びディスカッション | 14 |

7 研修生の受入れ

<table>
<thead>
<tr>
<th>研修期間</th>
<th>内容</th>
<th>備考</th>
<th>人数</th>
</tr>
</thead>
</table>
| 平成24年8月20日~31日 | インターンシップ | 高知工科大学
 高知工業高等専門学校 | 3 |
| 平成24年9月18日~20日 | 原料から抄造、乾燥に至る楮紙製造工程の実習 | 昭和女子大学 | 4 |
| 平成24年11月26日~12月6日 | フリース法の研修 | 東京農工大学 | 1 |
| 平成25年3月4日~8日 | エレクトロスピニング研修 | 東京農工大学 | 1 |

8 客員研究員招へい事業

<table>
<thead>
<tr>
<th>客員研究員名</th>
<th>矢井田 修</th>
<th>役職名</th>
<th>日本不織布協会 顧問、技術委員会委員長</th>
</tr>
</thead>
<tbody>
<tr>
<td>項目</td>
<td>日 程</td>
<td>内容</td>
<td></td>
</tr>
<tr>
<td>研究手法及び職員資質向上の指導</td>
<td>平成24年6月1日</td>
<td>エレクトロスピニング装置及びメルトブルー不織布製造装置による複合不織布製造に用いる基材について</td>
<td></td>
</tr>
<tr>
<td></td>
<td>平成25年2月21日</td>
<td>極細、超極細繊維を用いた研究課題について</td>
<td></td>
</tr>
<tr>
<td></td>
<td>平成25年2月22日</td>
<td>「最新の不織布情勢」についての講演</td>
<td></td>
</tr>
<tr>
<td></td>
<td>平成25年3月8日</td>
<td>乾式短纖維不織布の製造技術について</td>
<td></td>
</tr>
<tr>
<td>開催日</td>
<td>事業名・研究会名等</td>
<td>内</td>
<td>人数</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------</td>
<td>------------------</td>
<td>------</td>
</tr>
<tr>
<td>平成24年5月24日</td>
<td>かみわざひとづくり事業合同分科会及び分科会</td>
<td>メルトブロー不織布製造装置のデモンストレーション 食品包材分科会、医療衛生分科会、環境エコ分科会開催</td>
<td>35</td>
</tr>
<tr>
<td>平成24年6月8日</td>
<td>かみわざひとづくり事業講演会</td>
<td>講演：「輸送品質と経済」「省エネの進め方と具体的施策」</td>
<td>9</td>
</tr>
<tr>
<td>平成24年6月26日</td>
<td>かみわざひとづくり事業合同分科会及び分科会</td>
<td>ダイコーターの概要説明及び装置のデモンストレーション 食品包材分科会、医療衛生分科会、環境エコ分科会開催</td>
<td>11</td>
</tr>
<tr>
<td>平成24年8月3日</td>
<td>紙産業技術センター見学・体験会</td>
<td>施設の見学と体験実習 模様付き不織布づくりと小物づくり体験、名刺・はがきづくりとうちわづくり体験</td>
<td>53</td>
</tr>
<tr>
<td>平成24年8月29日</td>
<td>かみわざひとづくり事業合同分科会及び分科会</td>
<td>食品包材分科会情報提供 「農業資材に関する展示会報告」 食品包材分科会、医療衛生分科会開催</td>
<td>20</td>
</tr>
<tr>
<td>平成24年9月28日</td>
<td>かみわざひとづくり事業講演会及び分科会</td>
<td>講演：「繊維製品の評価試験について」 食品包材分科会、医療衛生分科会、環境エコ分科会開催</td>
<td>14</td>
</tr>
<tr>
<td>平成24年10月23日</td>
<td>かみわざひとづくり事業合同分科会</td>
<td>医療衛生分科会及び環境エコ分科会「ダイコーターを使用したアルミシートと不織布の貼り合わせ加工」</td>
<td>17</td>
</tr>
<tr>
<td>平成24年11月6日</td>
<td>かみわざひとづくり事業分科会</td>
<td>食品包材分科会「青果物の鮮度保持と包装について」</td>
<td>7</td>
</tr>
<tr>
<td>平成25年1月25日</td>
<td>かみわざひとづくり事業合同分科会</td>
<td>消費者庁から公表された「トイレクリーナーの表示に関する実態調査結果」について</td>
<td>29</td>
</tr>
<tr>
<td>平成25年2月1日</td>
<td>紙質研究会</td>
<td>講演：「土佐の宝は数々あれど・・・」</td>
<td>6</td>
</tr>
<tr>
<td>平成25年2月13日</td>
<td>かみわざひとづくり事業分科会</td>
<td>環境エコ分科会プラント運転実習 大型懸垂短網抄紙機</td>
<td>2</td>
</tr>
<tr>
<td>平成25年2月22日</td>
<td>かみわざひとづくり事業講演会</td>
<td>講演：「最新の不織布情勢」</td>
<td>16</td>
</tr>
<tr>
<td>平成25年2月28日</td>
<td>機能紙開発体制促進事業</td>
<td>分析機器アプリケーションセミナー フーリエ変換赤外分光光度計（F T I R） 講演：「紙パルプ・不織布分野におけるフーリエ変換赤外分光光度計（F T I R）のデータの見方・解き方」</td>
<td>5</td>
</tr>
<tr>
<td>平成25年3月6日</td>
<td>紙質研究会</td>
<td>講演：「(株)エコアス馬路村の取り組み」</td>
<td>8</td>
</tr>
<tr>
<td>平成25年3月27日</td>
<td>かみわざひとづくり事業講演会及び分科会</td>
<td>講演：「紙・シート製品の機能化と新規日用品分野開拓」「機能性紙・シート材を応用したスキンケア製品の動向」 食品包材分科会、医療衛生分科会開催</td>
<td>23</td>
</tr>
</tbody>
</table>
10 工業所有権

(1) 登録

<table>
<thead>
<tr>
<th>年月日</th>
<th>番号</th>
<th>名称</th>
<th>発明者名</th>
<th>共同出願者等</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成19年10月19日</td>
<td>特許第4025861号</td>
<td>家畜解体用の吸液マットおよび吸液枕材の保持シート</td>
<td>林幸男、澤村淳二、田村愛理、森澤純</td>
<td>㈱環境機器</td>
</tr>
<tr>
<td>平成20年11月7日</td>
<td>特許第4212561号</td>
<td>抗菌性の紙、不織布または繊維製品</td>
<td>森澤純、鈴木慎司</td>
<td>くじらハウス㈱</td>
</tr>
<tr>
<td>平成21年1月9日</td>
<td>特許第4240277号</td>
<td>多量の血液等を吸収できる吸収性物品</td>
<td>林幸男、澤村淳二、田村愛理、森澤純</td>
<td>㈱環境機器</td>
</tr>
<tr>
<td>平成21年11月13日</td>
<td>特許第4403243号</td>
<td>模様付き不織布の製造方法および模様付き不織布</td>
<td>田村愛理、林幸男、松本博、森澤純</td>
<td>単独</td>
</tr>
<tr>
<td>平成22年1月8日</td>
<td>特許第4431992号</td>
<td>保湿不織布</td>
<td>鈴木慎司、林典泰、松本博、澤村淳二、田村愛理、森澤純</td>
<td>河野製紙㈱</td>
</tr>
<tr>
<td>平成22年1月8日</td>
<td>特許第4431995号</td>
<td>エンボス加工グレープ紙とその製造方法</td>
<td>鈴木慎司、林典泰、松本博、田村愛理、遠藤恭範、森澤純、佐々木麻矢</td>
<td>河野製紙㈱</td>
</tr>
<tr>
<td>平成24年2月3日</td>
<td>特許第4915926号</td>
<td>保湿不織布</td>
<td>鈴木慎司、林典泰、澤村淳二、田村愛理、森澤純、滝口宏人、有吉正明</td>
<td>河野製紙㈱</td>
</tr>
<tr>
<td>平成24年3月2日</td>
<td>特許第4936284号</td>
<td>保湿不織布包装体</td>
<td>鈴木慎司、林典泰、澤村淳二、田村愛理、森澤純、滝口宏人、有吉正明</td>
<td>河野製紙㈱</td>
</tr>
<tr>
<td>平成24年5月11日</td>
<td>特許第4984027号</td>
<td>石英ガラス不織布の製造方法</td>
<td>森澤純、池典泰、松本博、澤村淳二、田村愛理、鈴木慎司、佐々木麻矢、林幸男</td>
<td>信越石英㈱</td>
</tr>
<tr>
<td>平成24年5月11日</td>
<td>特許第4984037号</td>
<td>石英ガラス繊維含有乾式短繊維ウェブおよび不織布</td>
<td>森澤純、池典泰、山崎裕三、澤村淳二、田村愛理、滝口宏人、鈴木慎司、松本博</td>
<td>信越石英㈱</td>
</tr>
</tbody>
</table>
（2）公開中

<table>
<thead>
<tr>
<th>年月日</th>
<th>番号</th>
<th>名称</th>
<th>発明者名</th>
<th>共同出願者等</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成21年</td>
<td>8月13日</td>
<td>特開</td>
<td>エンボス加工クレープ紙</td>
<td>鈴木慎司、林幸男、池典泰、松本博、田村愛理、遠藤恭範、森澤純、佐々木麻矢、河野製紙㈱</td>
</tr>
<tr>
<td>平成23年</td>
<td>3月31日</td>
<td>特開</td>
<td>吸収性物品</td>
<td>田村愛理、鈴木慎司、澤村淳二、森澤純、滝口宏人、金星製紙㈱、㈱近澤製紙所</td>
</tr>
<tr>
<td>平成24年</td>
<td>6月28日</td>
<td>特開</td>
<td>大気汚染自動測定装置の異物捕集用フィルタ</td>
<td>鈴木慎司、㈱環境機器</td>
</tr>
<tr>
<td>平成24年</td>
<td>8月30日</td>
<td>特開</td>
<td>非木材パルプの製造方法および紙</td>
<td>遠藤恭範、ひだか和紙㈱</td>
</tr>
</tbody>
</table>
11 講師派遣・口頭発表及び誌上発表

(1) 講師派遣・口頭発表（ポスター発表を含む）

<table>
<thead>
<tr>
<th>年月日</th>
<th>会 名</th>
<th>場 所</th>
<th>テ ー マ</th>
<th>発表者</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成24年5月17日</td>
<td>東亜伝統紙張保護検討会</td>
<td>中国南京博物院</td>
<td>光学顕微鏡観察による紙文様の分析</td>
<td>有吉正明</td>
</tr>
<tr>
<td>平成24年6月2日</td>
<td>日本繊維機械学会「第65回年次大会」</td>
<td>大阪市</td>
<td>大量紡紗エレクトロスピニングの実用化に向けて</td>
<td>殿山真央</td>
</tr>
<tr>
<td>平成24年6月22日</td>
<td>日本繊維機械学会不織布研究会（第56回）</td>
<td>大阪市</td>
<td>高知県の不織布製造・製品開発支援の現状について</td>
<td>森澤 純</td>
</tr>
<tr>
<td>平成24年6月30日</td>
<td>文化財保存修復学会第34回大会</td>
<td>東京都日本大学</td>
<td>伝統技能継承支援のための多感覚情報提示による主観的追体験システム</td>
<td>関 正純</td>
</tr>
<tr>
<td>平成24年7月1日</td>
<td>文化財保存修復学会第34回大会</td>
<td>東京都日本大学</td>
<td>複合現実感技術を用いた伝統工芸における観察困難な技能継承支援</td>
<td>関 正純</td>
</tr>
<tr>
<td>平成24年7月1日</td>
<td>文化財保存修復学会第34回大会</td>
<td>東京都日本大学</td>
<td>フリース法による保存紙資料の強化</td>
<td>関 正純</td>
</tr>
<tr>
<td>平成24年9月6日</td>
<td>日仏共同研究</td>
<td>東京都昭和女子大学</td>
<td>手漉き和紙の現状－高知県を例に</td>
<td>有吉正明</td>
</tr>
<tr>
<td>平成24年10月10日～12日</td>
<td>ICC2012</td>
<td>札幌市</td>
<td>Formation and structure of the complexes of sub-elementary fibrils</td>
<td>鈴木慎司</td>
</tr>
<tr>
<td>平成24年10月26日</td>
<td>紙産業技術初任者研修</td>
<td>当センター</td>
<td>製紙工程と環境等の法規則</td>
<td>近森啓一</td>
</tr>
<tr>
<td>平成24年11月3日</td>
<td>第5回東アジア紙文化保存修理シンポジウム</td>
<td>太宰府市</td>
<td>日本の紙漉き産地調査報告</td>
<td>有吉正明</td>
</tr>
<tr>
<td>平成24年11月7日</td>
<td>大学・公設試等技術シーズ型研究会</td>
<td>四国中央市</td>
<td>新型孔形状ノズルを使用した水流交絡不織布の開発</td>
<td>田村愛理</td>
</tr>
<tr>
<td>平成24年11月8日</td>
<td>平成24年度産業技術連携推進会議紙パルプ分科会</td>
<td>富士市</td>
<td>無機系球状体複合シートの開発</td>
<td>遠藤恭範</td>
</tr>
<tr>
<td>平成25年1月18日</td>
<td>紙産業技術初任者研修</td>
<td>当センター</td>
<td>紙・不織布・繊維の分析評価検定</td>
<td>遠藤恭範</td>
</tr>
<tr>
<td>平成25年3月13日</td>
<td>四国紙パルプ研究協議会平成24年度第2回講演会</td>
<td>当センター</td>
<td>高知県立紙産業技術センターの新規導入設備について</td>
<td>森澤 純</td>
</tr>
</tbody>
</table>

(2) 誌上発表（論文発表及びその他の投稿を含む）

<table>
<thead>
<tr>
<th>掲 載 誌</th>
<th>テ ー マ</th>
<th>発表者</th>
</tr>
</thead>
<tbody>
<tr>
<td>不織布情報August 2012 No.450 14-16</td>
<td>湿式不織布追加以降の不織布の統計推移</td>
<td>近森啓一</td>
</tr>
</tbody>
</table>
Ⅲ 調査研究報告
多環芳香族炭化水素除去フィルター用基材開発の基礎的研究

遠藤恭範

Fundamental Study on Development of Removal Filter of PAHs

Yasunori ENDO

発がん性があると言われているベンゾ(a)ピレン等多環芳香族炭化水素を吸着することができる無機粒子（非晶質鉄水酸化物aFe）が見出されたが、厚みが薄く隙間の大きいフィルター加工用不織布に対して、最大限の効果を発揮させるよう複合することは現行技術で難しい。そこで、理想とされる多環芳香族炭化水素の吸着能を向上させた除去フィルター用基材の開発を進めるため、aFeスラリーの粒径微粒子化や不織布全体に固定化させる技術について、その基礎的な研究を行った。

その結果、aFeスラリーの微粒子化と非晶化は相反しているように見受けられ、効果的な固定化については合成繊維の改質を行うことで向上する傾向が見られたものの、親水性バインダーを使用する場合aFe粒子を合成繊維を使用した不織布全体に付着させることは難しいと判断された。

1. 背景と課題

自動車用キャビンフィルターや空調フィルター等は屋外の空気を室内に取り入れる際に外気に存在する花粉や工場・自動車からの排気ガス等に含まれる有害成分を除去しており、また、換気フィルターや空気浄化器も台所での燃焼ガスや室内から発生する揮発性物質(VOC)を除去している。これらのフィルターは一般に粒状活性炭が使用されているが、アレルギーを刺激してアレルギーによる発症を促進させる環境中の化学成分（アジュバント成分）であるベンゾ(a)ピレン、フルオランセン、ベンゾアントラセンなどの、ベテロ原子や置換基を含まない芳香族炭素を含む多環芳香族炭化水素（以下、PAHsという。）は捕集が困難されている。国際がん研究機関（IARC）において、ベンゾ(a)ピレンは発がん性があるとされるグループ1、ベンゾアントラセンやフルオランセンは人に対して発がん性があるとされるグループ2Aに属し、特にベンゾ(a)ピレンは大気汚染防止法に定められた VLCに対して捕集されるとされる。

開発が進められているアレルギー発症予防フィルターの課題として粒径の最小化がある。使用するaFeは液中で生成させた沈殿物をろ過・乾燥させたケークを物理的に粉砕して粒径が100～500ミクロンに分級したもので、aFeの粉末状態と液中生成の状態を比較したところ、液中生成のaFeは粒径が500ミクロン程度に分布し、粉末状態のものよりも粒径が小さかった。

開発が進められているアレルギー発症予防フィルターの課題として粒径の最小化がある。使用するaFeは液中で生成させた沈殿物をろ過・乾燥させたケークを物理的に粉砕して粒径が100～500ミクロンに分級したもので、1平方メートル当たり約100g/m²と厚みが薄くかつ隙間の多いフィルター用途の不織布への固定化では、粒径が不織布に使用されている繊維1本の幅よりも大きくなっている。
こと、また、繊維間の隙間よりも粒径が小さくなってしまうため不織布に保持されにくく非常に脱落を起こしやすい。

また、aFeの吸着能力を最大限に発揮させるためには、不織布に多量に固定化させるとともにその比表面積を十分に活用しなくてはならない。そのためには基材である不織布の繊維表面にaFeを並べる技術が必要である。一般的な有機系バインダーによる固定化ではaFeの表面がバインダーで被覆されてしまい吸着が阻害されてしまうため、従来とは違う新しい固定化方法の開発が必要とされている。

加えて、現在のaFe製造コストが比較的高いため、aFe生成後のスラリー状態で粒径の最小化と不織布への固定化を検討することがフィルター市場参入の障害を低く設定することができるが、粒径についてはスラリー状態のaFeが固定化されるまでの間に凝集を引き起こしてしまい最小化が維持できないことが課題となっている。

そこで、これらの解決を図るため、①aFeの製造時において、固定化させる不織布に使用する合成繊維（一般的にポリエステル繊維）の平均繊維幅である20～50ミクロンよりも小さく生成するよう条件をコントロールさせ、凝集させることなくこの粒径を維持させる技術の開発、②フィルターとしての機能を最大限に発揮させるために、不織布にaFeを固定化させる際、繊維表面にaFeを均一に敷き詰められるような固定化技術の開発の2点を研究開発課題として設定し、これらに関する基礎的なデータを収集することとした。

2. aFe粒径の微粒子化
現在のaFeの製造条件は、30%（W/V）塩化鉄（III）溶液に対し4%（W/V）水酸化ナトリウム溶液（以下、NaOH溶液とする。）を添加してpH値が7以下になるよう合成し、これを4時間以上放置して生成物を沈殿させた後、上澄み液を除去してからイオン交換水で5回ほど洗浄して生成物を得ている。この生成物をろ過脱水してケーキを作製し、100℃で乾燥させてからボールミルで粉砕した後、粒径が250～500ミクロンの粒径のものを分級して用いられている。

この条件において粒径最小化の弊害はaFeを一度乾燥することで粉砕・分級工程が発生していることである。先に述べたように製造コストの問題を含めて考えると生成物のスラリー状態での最小化を図る必要がある。

そこで、aFe製造工程で粒径に影響を与えるいくつかの条件について検証し、微粒化が製造可能な条件を確認した。

2.1 aFe製造での微粒子化条件確認
生成物粒径の最小化を考えたとき、化学的な一般論として、溶液が低濃度であれば粒度が微細化になる。また、この他にもpH値や攪拌等の要因がいくつか考えられる。そこで、aFe生成に対し濃度変化による検証と生成終了時pH値、攪拌時の条件や反応順序の確認を行った。

2.1.1 微粒子化の条件検討
まず、低濃度でのaFe生成条件として、現状濃度の約1/2となる15%（W/V）に調整した塩化鉄溶液を、回転数表示が可能な攪拌機を用いて回転数100rpmで攪拌しながら、現状の約1/8の濃度となる0.5%（W/V）に調整したNaOH溶液を適度に加えてpH調整を行いaFe生成を試みた。また、aFe生成後一晩放置させ、その後精製水で3回上澄み液を入れ替え生成物を洗浄する作業を行った。

pH調整は中性域（以下、水準①とする。）、酸性側（以下、水準②）、アルカリ性側（以下、水準③）で生成終了させた。また、水準①を基本として、攪拌回転数を100rpmから500rpmに設定したものの（以下、水準④）、また、水準③を基本に中和反応に使用するNaOH溶液の濃度を0.5%から1%に引き上げた条件によるもの（以下、水準⑤）、水準①を基本に塩化鉄（III）溶液にNaOH溶液を添加する順序ではなくNaOH溶液に対して塩化鉄（III）溶液を添加する方法（以下、水準⑥）も検証した。

2.1.2 最終pH値と目視による粒子確認
各条件で製造したaFeスラリーについて、最終のpH値の測定と、粒径の評価として各水準のスラリー沈降層から5mlをマイクロビペットで抜き出し、100mlガラスビーカーに加えた後、精製水で100mlにメスアップした状態（5%（W/V）濃度の懸濁状態）から1時間後の粒子の沈降状態を目視にて確認した。なお、比較として現在製造されているaFeを同様に処理（以下、現状とする。）した。
表1 aFe製造条件と最終結果

<table>
<thead>
<tr>
<th>水準</th>
<th>反応停止pH値</th>
<th>搅拌回転数</th>
<th>NaOH溶液濃度</th>
<th>投入順序</th>
<th>最終pH値</th>
<th>沈殿状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>水準①</td>
<td>中性域</td>
<td>100rpm</td>
<td>0.5%</td>
<td>FeCl₃→NaOH</td>
<td>5.7</td>
<td>少し懸濁</td>
</tr>
<tr>
<td>水準②</td>
<td>酸性域</td>
<td>100rpm</td>
<td>0.5%</td>
<td>FeCl₃→NaOH</td>
<td>4.4</td>
<td>沈殿</td>
</tr>
<tr>
<td>水準③</td>
<td>アルカリ性域</td>
<td>100rpm</td>
<td>0.5%</td>
<td>FeCl₃→NaOH</td>
<td>9.6</td>
<td>沈殿</td>
</tr>
<tr>
<td>水準④</td>
<td>中性域</td>
<td>500rpm</td>
<td>0.5%</td>
<td>FeCl₃→NaOH</td>
<td>5.4</td>
<td>少し懸濁</td>
</tr>
<tr>
<td>水準⑤</td>
<td>アルカリ性域</td>
<td>100rpm</td>
<td>1%</td>
<td>FeCl₃→NaOH</td>
<td>7.9</td>
<td>沈殿</td>
</tr>
<tr>
<td>水準⑥</td>
<td>中性域</td>
<td>100rpm</td>
<td>0.5%</td>
<td>NaOH→FeCl₃</td>
<td>6.8</td>
<td>沈殿</td>
</tr>
<tr>
<td>現状</td>
<td>中性域</td>
<td>100rpm</td>
<td>0.5%</td>
<td>FeCl₃→NaOH</td>
<td>4%</td>
<td>かなり懸濁</td>
</tr>
</tbody>
</table>

表2 各水準の最終pH値及び沈殿

<table>
<thead>
<tr>
<th>水準</th>
<th>最終pH値</th>
<th>沈殿 (FAU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>水準⑦</td>
<td>6.9</td>
<td>3</td>
</tr>
<tr>
<td>水準⑧</td>
<td>5.7</td>
<td>7</td>
</tr>
<tr>
<td>水準⑨</td>
<td>8.7</td>
<td>2</td>
</tr>
</tbody>
</table>

この結果から、生成を終了させるpH値は中性域ではなく、酸性側あるいはアルカリ性側が妥当と見受けられ、また、攪拌回転数を高く設定すると、上澄み液が濁り生じが不十分となっている可能性が高いと判断される。製造時の溶液投入順序については塩化鉄溶液を回転数100rpmで攪拌しながら0.5%(W/V)NaOH溶液を適度に加えて最終pHを中性域（水準⑦）、酸性側（水準③）、アルカリ性側（水準⑨）と3水準調整し、これらを一晩静置した状態での濁度を測定した。なお、濁度測定にはハック社製ポータル水質分析計DR8900を用いた。

2.1.3 濁度測定での沈殿状態の確認
粒度の微粒子化に影響されると思われる沈殿状態について、aFe生成後一定時間経過した時の濁度測定で数値化を試みた。aFe生成条件は前述と同様、15%(W/V)塩化鉄溶液を回転数100rpmで攪拌しながら0.5%(W/V)NaOH溶液を適度に加えて最終pHを中性域（水準⑦）、酸性側（水準③）、アルカリ性側（水準⑨）と3水準調整し、これらの結果を一晩静置した状態での濁度を測定した。これにより、濁度（FAU）は数値が小さいほど透明（=濁っていない）ことを示す。各水準とも小さな値を記録したが、酸性側は数値が高めであることから、pH調整におけるaFe生成は不十分であると考えられ、最終pH値は中性域～アルカリ側でのaFe生成度がより高いと推測される。

2.1.4 aFe粒子の顕微鏡による観察
前段で製造したaFeスラリー3水準について、マイクロビペットで沈殿物を少量採取し、スライドグラスに展開させて光学顕微鏡（（株）ニコン製ECLIPSE 80i）を用いて倍率200倍で観察した。
観察の結果、最終pH値が酸性である水準③では粒子径が不定形であるが、中性域の水準⑦では長方形、アルカリ性である水準⑨ではほぼ円形を成していることが分かった。

このことから、顕微鏡観察では濁度が高いほど微粒子化が進んでいると見受けられるが、見方によっては最終的にaFeが正常に生成していないことも考えられる。

2.2 超音波処理による微粒子化の検討
これまでaFe製造条件のコントロールで微粒子化を検討してきたが、次は物理的な外力により微粒子化を促進させることができるか否かを確認するため、aFe生成時に超音波処理を施す検討を行った。

生成条件は前述と同じとし、まず調整した塩化鉄溶液を超音波洗浄機（本多電子株式会社製超音波洗浄機W-113サンパ）にセットして、NaOH溶液を適下してpH調整を行っていくと同時に周波数を28kHz及び100kHzに設定して超音波処理を行いpH値が8前後を示した時点で全ての処理を停止した。

<table>
<thead>
<tr>
<th>周波数</th>
<th>最終pH値</th>
<th>濁度（FAU）</th>
</tr>
</thead>
<tbody>
<tr>
<td>28kHz</td>
<td>8.4</td>
<td>6</td>
</tr>
<tr>
<td>100kHz</td>
<td>8.0</td>
<td>5</td>
</tr>
</tbody>
</table>

表3 超音波処理による最終pH値及び濁度

濁度測定の結果から、超音波の周波数による違いはほとんど見られないが、顕微鏡による観察では周波数の差異が確認される。粒子の形状については低周波数である28kHzで超音波処理を行った場合不定形で散在しているものの、100kHzの周波数で超音波処理を行った場合は粒子が部分的に凝集して円形や長辺形の塊を形成している。また、aFe粒子の色相では周波数28kHz処理の場合かなり薄い色濃度であるのに対し、周波数100kHz処理の場合は超音波処理を行っていないaFeの色濃度とほぼ変わらない状況であった。

以上より、超音波処理を施した時、特に周波数に関係なくaFe粒子は生成される。また、観察された色相から低周波数での超音波処理ではaFe特有の茶色が非常に薄い色濃度となったことは、aFe粒子の微粒子化に起因するものなのか、あるいはaFeが多環芳香族炭化水素の吸着能力を持つ通常の非晶質状態になっているかどうかという点で判断が難しい。

2.3 増粘剤の添加による微粒子化の検討
aFeの微粒子化において製造時における凝集を阻害することも重要である。よって、微粒子化条件として液体の粘度に依存性が見いだせるのではないかと考えた。そこで、生成反応時に増粘剤を添加して粒子形成の状態を確認した。

前述同様のaFe製造条件で、NaOH溶液の滴下時にpH9を示したところ、さらに2%(W/V)のカルボキシメチルセルロース（以下、CMCとする。）溶液を全体の約10%程度の量を添加して、3分間攪拌を続けた後停止させて製造完了とした。また、増粘剤濃度の違いによる微粒子化の違いを確認するため、CMC濃度を1%及び0.5%及び0.1%（ともにW/V）に設定し同様の手法で試験及び評価を行った。なお、生成最終pHはCMC濃度の高い順から低い順に9.7、
図7 2%CMC溶液添加時のαFe粒子（×200）

図8 1%CMC溶液添加時のαFe粒子（×200）

図9 0.5%CMC溶液添加時のαFe粒子（×200）

図10 0.1%CMC溶液添加時のαFe粒子（×200）

図11 CMC溶液を添加しない時のαFe粒子（×200）

図12 CMC無添加 3日経過時の粒子（×200）

図13 1%(W/V)CMC添加 3日経過時の粒子（×200）

図14 CMC無添加 14日経過時の粒子（×200）

7.8、8.9、7.9であり、比較として製造したCMCを添加しない条件ではpH9.7であった。

CMC溶液添加の有無では顕微鏡観察時に明らかに今までと異なる形状を示している。増粘剤添加のないαFe（図11）は、凝集して円形や楕円形に近い形状を多く確認しているが、CMC添加（図7他）では不定形なフィルム（皮膜）状で生成したαFeが確認された。CMC濃度の違いに関しては形状観察で大きな違いを見いだせないが、CMC濃度が小さくなるにつれαFe粒子の凝集と思われる大きな塊が多く確認されるようになった。また、顕微鏡で観察するαFeの色濃度がCMC濃度の高いほど薄いように見受けられる。以上のことから、CMCはαFe粒子形成について影響力示すことが示唆された。

次に、増粘剤の影響がαFe粒子の分散に長時間継続するのかどうか、1%(W/V)CMC溶液添加時と添加しない時のαFeの形状を確認した。
図15 1% (W/V) CMC添加 14日経過時の粒子（×200）

CMC添加後3日経過時と14日経過時で添加しないaFe粒子と比較を行ったが、図のとおり粒子形状は異なっている。増粘剤無添加のaFeは生成当初円形を多く示しているが、経過日数が多くなるにつれその形状が崩壊し始めているように見受けられる。CNC添加のaFeは最初から不定形な皮膜状が長期間維持されているように見受けられる。

3. aFe粒子の固定化

エアフィルターの性能は小さい圧力損失と大きい捕集効率で決定する。しかし、この2つの性能は相殺するものであり、両立は簡単にできない。

今回開発に使用する不織布はポリエステル素材とポリエチレン素材を複合させた（芯鞘型）合成繊維で構成されており、ポリエチレン素材はポリエステル素材に比べて融点が低く、芯部分にポリエステル素材、鞘部分にポリエチレン素材を複合することで、繊維交絡部分において融点差を利用した加熱による自己接着が可能となっている。

走査型電子顕微鏡（以下、SEMとする。）でこの不織布の表面を観察すると、次のように大きな縦縦線の間隔を持っている。

このような構造から圧力損失に関しては問題ないが、微粒化したaFeを繊維表面に広範囲に付着させないと捕集効率は向上しない。そこで、このaFeの固定化についていろいろな検討を行った。

3.1 バインダー混合による固定化の検討

15% (W/V) 塩化鉄（III）溶液50mlを回転数300rpmで懸濁しながら0.5% NaOH溶液1000mlを加えた後、すぐに1% (W/V) CMC溶液100mlを加えて1分間だけ懸濁を続けてaFe溶液を調整した。次に、この調整液に対してガラス繊維等の無機繊維に対して結合力を示すDIC株式会社製エマルジョン系エポキシ樹脂バインダー「ディックファインEN-0270」（以下、バインダーとする。）を添加することとし、以下の条件を設定した。

- 調整液に対しバインダー原液を100ml添加（No.1条件）
- 調整液の上澄み液を捨てaFe濃度を約2倍に高めた後、バインダー原液を100ml添加（No.2条件）
- 調整液の上澄み液を捨てaFe濃度を約4倍に高めた後、バインダー原液を100ml添加（No.3条件）

また、もう一方でバインダーの種類をユケン工業株式会社製セラミック成形用アクリル系バインダー「セランダーAP-5」（以下、セラミック成形用バインダーとする。）に変更して、No.2条件と同じ条件としたもの（No.4条件）を設定したほか、従来のaFeを分散させた溶液400mlにバインダー100mlを添加した条件（No.5条件）も調整した。

aFeスラリーを不織布に固定化する方法は、浅底バットにバインダーを加えたaFe調整液200〜300mlを入れた後1/20m2サイズの不織布をバットに入れて全体を含浸させ、そのまま前後左右に振り動かしてaFeを不織布間でまんべなく分散させた後、不織布をバットから取り出してすぐに金属製格子網の上に置き換え90〜100℃のオーブンで乾燥させた。

このように試作したaFe浸漬不織布の表面を光学顕微鏡で低倍率による観察を行い、付着固定化状態を確認した。

図16 不織布基材の表面SEM画像（×100）
図17 No.1条件の不織布表面（×40）
図18 No.2条件の不織布表面（×40）

図19 No.3条件の不織布表面（×40）

図20 No.4条件の不織布表面（×40）

図21 No.5条件の不織布表面（×40）

図22 No.2条件のaFe固定状態（×500）

図23 No.4条件のaFe固定状態（×500）

光学顕微鏡による表面観察から、aFeスラリー濃度が高くなるにつれ不織布の繊維への付着量が多くなる傾向は確認されるが、これに比例してバインダーが繊維間を架橋し隙間を埋めていることも確認された。また、従来のaFeでは粒子が不繊で大きな粒状物もあれば非常に細かなか粒状物もあり、繊維表面の効果的な固定化が確認されなかった。セラミック成形用バインダーを用いた条件では繊維表面に付着している様子は確認されるが、aFeの色相が薄く、固定化できたとしてもその吸着効果に疑問の余地が残る。

次に、aFeの効果が発揮できるような状態で不織布の繊維に固定化されているかどうかを確認するため、No.2及びNo.4条件についてSEMを用いて不織布表面の観察を行った。

バインダー添加時のaFeは繊維表面全体に均等に付着している状態ではなく、不織布の繊維交絡部に皮膜状態で多く存在している。また、一般的な無機繊維用バインダーは皮膜の表面に細かな粒状物が確認されるが、セラミック成形用バインダーの場合はこのような粒状物は確認できない。しかしながら、この粒状物がaFeであるかどうかの確認はできていない。

3.2 不織布の改質による固定化的検討

基材となる不織布はポリエスチル素材とポリエチレン素材で構成されていることから、もともと親水性はなくaFe単体や水溶性バインダーとの相性は良くないことが分かっており、前述の結果のように不織布の繊維交絡部に集中する結果が得られている。

このことから、aFeスラリーと水系のバインダーとの相性を向上させるために不織布を親水性に改
質する必要も出てくる。そこで、不織布の改質について何通りか手法を検討して試験を行い、aFeの付着量を確認したほか、実際に多環芳香族炭化水素の吸着試験を行った。

3.2.1 改質方法

改質に用いる不織布は1/20m²サイズに裁断して用いた。

改質条件①としてコロナ放電処理を検討した。コロナ放電とは大気圧空気の下で電極間に絶縁体を介して高周波・高電圧を印加することで生成する放電であり、空気中でコロナ放電を受け活性化した酸素分子が物質分子と結合して水酸基(-OH)やカルボニル基(-CO-)を生成させることから、物質の親水性を一時的に向上させることを知っている。

このコロナ放電処理はプラスチックフィルムと紙を貼り合わせるラミネート工程の前処理として活用されているほか、プラスチック表面の印刷適性向上にも利用されている。今回検討したコロナ放電の条件は電圧実効値20kV、出力100Wであり不織布表面全体に処理を行った。

次に、改質条件②としてオゾン水浸漬処理を検討した。オゾンとは酸素原子3つで構成された無色の気体であり、オゾン臭と呼ばれる特有の刺激臭を持っていて濃度が高いと人命が危険にさらされることがある。このオゾンを水に溶解させたものがオゾン水であり、オゾン水生成装置(荏原実業株式会社製)を用いて、オゾン濃度8.5ppmのオゾン水を製造し、これに不織布全体を水温25℃で一晩放置させた後、取り出して105℃のオーブンで乾燥させた。

改質条件③として低圧水銀ランプを利用した紫外外線照射による改質処理を検討した。紫外線を有機物に照射することにより、表面層の化学結合を切断した後、生成した活性酸素の作用で切断された部分を親水性の高い官能基(水酸基、アルデヒド基、カルボキシル基等)を生成させることができる。活性酸素は低圧水銀ランプを利用することでき、放射スペクトルの一つである185nm波長の光を酸素原子が吸収しオゾンが発生し、このオゾンが同じく放射スペクトルである254nm波長の光を吸収することで分解生成される。今回検討した改質条件は小型の低圧水銀ランプ(センチュリオック株式会社製HLR100T-2及びUNB100A-1)を使用し、表面の酸化作用効果を高めるために過酸化水素水10%溶液を不織布全体にスプレー塗布後、高さ15cmから5分間紫外線を照射（平均紫外線強度1090μW/cm²）した後、105℃のオーブンで乾燥させた。

最後に改質条件④として強アルカリ性溶液である水酸化ナトリウム溶液(以下、NaOH溶液とする。)に浸漬させる改質手法を検討した。ポリエステル素材のアルカリによる減量加工は衣料分野で旧知であり、水酸化ナトリウムを用いた強アルカリ性溶液が主に用いられる。今回の改質条件は25%濃度のNaOH溶液を80～90℃程度に加熱して不織布全体にこれを浸漬させ5分間保持した後、取り出して水洗した後、105℃のオーブンで乾燥させた。

なお、今回使用する不織布にはポリエチレン素材も存在している。ポリエチレン素材は耐アルカリ性を持つため改質効果は期待できないが、芯部分であるポリエステル素材への効果を狙って改質テストを行った。

3.2.2 改質処理不織布の評価

前段の改質条件で改質処理した不織布の改質状態を極微弱発光検出分光システムを用いて光学的に比較評価した。

極微弱発光検出分光システムは人の目には見えない非常に微弱な光である化学発光(ケミルミネッセンス)を検出する装置であり、ケミルミネッセンスとは、物質が励起状態から基底状態に戻る際放出するエネルギーを熱や光に変換する現象のうち、その励起状態が化学反応によって作られ基底状態に戻る際に放出する光のことを示す。この装置は主に有機物の劣化度測定に利用されている。酸化の中間過程で生成する過酸化物(励起状態)が分解(基底状態)される際発光し、この発光量を測定することで酸化分解の進行具合が判断できる。今回選択した改質条件全て繊維表面に水酸基やアルデヒド基、カルボキシル基を生成させるものであり、基本的に繊維自体を酸化劣化させていることと同じであるから、この分析手法が応用できると考えた。

使用する分光機器は東北電子産業株式会社製極微弱発光検出分光システムCLA-FS3（以下、ケミルミネッセンスアナライザーとする。）であり、加熱型試料室を装備して温度150℃に設定、分析開始から1時間の発光量データを収集した。なお、試験サンプルは50mmの試料室全面に収まるように裁断した。
図24 改質不織布の発光データ

3.2.3 改質処理不織布へのaFe固定化の検討
15%(W/V)塩化鉄（III）溶液50mLを回転数300rpm
で攪拌しながら0.25%NaOH溶液1800mLを加えて最終
pH値を8.5とした製造条件と、同様の手順で最終pH
値を8.6とした後すぐに2%(W/V)CMC溶液100mLを加
えて1分間だけ攪拌してaFeを製造した条件の合計
2水準を設定した。

固定化方法は、静置させておいた各水準の上澄
み液を捨てて全体容量5000mLとした後、セラミック
成形用バインダーを全体濃度の10%(V/V)となるよ
うに加え、これを浅底バットに入れて前述の固定
化方法と同様の手順を行った。なお、対照物とし
て改質処理を行っていない不織布への固定化も行
った。

3.2.4 aFe固定化不織布の物性評価
各改質条件及び各aFe水準における固定化後の不
織布へのaFe付着量及び通気性の評価を行った。
aFe付着量は1平方メートル当たりの付着量で算出
することとし、サンプルをJIS P 8111に規定され
る環境内（温度23℃、湿度50%R.H.）に十分飼化さ
せた後試験を行い、通気性試験はカトーテック株
式会社製KES-F8通気性試験機を用いて、それぞれ
n=2の平均より固定化前サンプルの測定値を差し引
くことで算出した。

<table>
<thead>
<tr>
<th>改質条件</th>
<th>aFe付着量g/m2</th>
<th>通気性kPa・sec/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>4.4</td>
<td>-0.00029</td>
</tr>
<tr>
<td>②</td>
<td>2.2</td>
<td>-0.00028</td>
</tr>
<tr>
<td>③</td>
<td>11.2</td>
<td>0.0009</td>
</tr>
<tr>
<td>④</td>
<td>7.5</td>
<td>0.0004</td>
</tr>
<tr>
<td>未処理</td>
<td>4.4</td>
<td>0.0004</td>
</tr>
</tbody>
</table>

表4 CMC無添加でのaFe固定化不織布の物性

<table>
<thead>
<tr>
<th>改質条件</th>
<th>aFe付着量g/m2</th>
<th>通気性kPa・sec/m</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>3.0</td>
<td>-0.0021</td>
</tr>
<tr>
<td>②</td>
<td>4.3</td>
<td>0.0018</td>
</tr>
<tr>
<td>③</td>
<td>2.9</td>
<td>-0.0006</td>
</tr>
<tr>
<td>④</td>
<td>7.1</td>
<td>0.0007</td>
</tr>
<tr>
<td>未処理</td>
<td>6.5</td>
<td>-0.0015</td>
</tr>
</tbody>
</table>

表5 CMC添加でのaFe固定化不織布の物性

aFe付着量についてはサンプルの個体差が見受け
られるものの、未処理の不織布との比較からCMC添
加の方がaFe付着量が多いことが確認され、改質を
行うことでaFe付着量の増加する条件はNaOH溶液を
用いた改質であった。通気性に関しては全体的に
非常に小さな差異しか認められず、aFe固定化によ
る圧力損失はほとんど見られないと考えている。

3.2.5 繊維表面でのaFe固定化状態の観察
前述の改質条件で固定化させたaFeの付着状態を、
SEMを用いて倍率5000倍で拡大観察した。最初に
CMC無添加の条件について以下に示す。

図25 改質未処理不織布のaFe固定化状態
図26 コロナ放電処理不織布のaFe固定化状態

図27 オゾン水処理不織布のaFe固定化状態

図28 紫外線処理不織布のaFe固定化状態

図29 NaOH溶液処理不織布での状態

図30 改質未処理不織布のaFe固定化状態

図31 コロナ放電処理不織布のaFe固定化状態

図32 オゾン水処理不織布のaFe固定化状態

図33 紫外線処理不織布のaFe固定化状態

により親水化しており、aFeを含む水溶性バインダーとの相容性が向上していると判断する。
次に、CMCを添加した条件での固定化状態を同様に観察した。

CMC無添加の場合における改質未処理の不織布繊維表面を拡大観察すると、aFe混合バインダーが繊維表面に「載っている」状態で確認され、オゾン水処理及び紫外線処理も同様の状態で確認された。
しかし、コロナ放電処理及びNaOH溶液処理の不織布繊維では繊維と「相容している」状態に見受けられ、繊維表面とaFe混合バインダーとの境界線が見当たらない。これは不織布繊維表面が改質処理
図34 NaOH溶液処理での状態

CMC添加時の場合も無添加と同様の傾向を示し、コロナ放電処理及びNaOH溶液処理の不織布表面では繊維とバインダー皮膜との境界線が見分けにくく、相容性がある状態だと思われる。

3.2.6 多環芳香族炭化水素の吸着評価

aFeを固定化させた各改質条件のサンプルについて、多環芳香族炭化水素を吸着できるかどうかの検証を行った。

フィルター試験方法は簡易的に次のように設定した。200℃に加熱できるホットプレート上にステンレス製シャーレを置き、その中にアントラセン試薬を0.05g散布した後シャーレを加熱し、蒸気が出てくるとともに側面に設置したサーチュリーティー（OSCILLATING TURBO CIRCULATOR HFT-2114）の「強」レベル（株式会社カスタム製デジタル風速計WS-01で測定した平均風速は4.0m/s）で送風する。その対面に直径20cm長さ50cmの塩ビ製の管を置き管内部に送風するとともに、反対側に管を塞ぐようにサンプルを貼り付けで30分間送風した後に塩ビ管から外したサンプルをケミルミネッセンスアナライザーにより発光スペクトル分析を行った。ケミルミネッセンスアナライザーの分析条件は200℃に温度設定し、350～680nmの波長間に18分割して分光しそれぞれのスペクトル強度データを採取した。

まず先にアントラセン試薬自体のケミルミネッセンスを確認した。アントラセンはC14H10で表わされるベンゼン環が3個つながった多環芳香族炭化水素であり、もともと昇華性を持っている。アントラセンを200℃に加熱して30秒後、60秒後及び90秒後の発光スペクトルを測定した。

図35 フィルター試験全体図

図36 アントラセンのケミルミネッセンス

アントラセンは380～400nmの紫外領域を主体に発光スペクトルが確認された。また、加熱後30秒経過時には600nm及び680nmの発光スペクトルが確認されなかったが、60秒経過以降に大きく検出されている。この波長域は加熱による酸化燃焼状態を示することが多く、アントラセンが加熱により酸化されてアントラキノンが生成しているのではないかと思われる。

次に改質未処理の不織布について、フィルター試験後、フィルター処理後の発光スペクトルを測定した。

図37 改質未処理の不織布のケミルミネッセンス

不織布のみのデータとアントラセンを用いたフィルター試験後の不織布のデータを比較したところ、改質していない不織布でもアントラセンの捕捉ができていることが判明される。

そこで、この改質未処理の不織布にaFeを固定化させた時にアントラセンを吸着できるか検証を行った。図38のとり紫外領域及び660nm以降の発光
スペクトル強度が高く測定されていることから、aFeによるアントラセンの吸着が確認されるものの、その吸着量は少ないように見受けられる。

図38 aFe固定化未処理不織布の発光スペクトル

この他、4つの改質条件それぞれのケミルミッセンス発光スペクトルを以下に示す。

図39 コロナ放電処理不織布の発光スペクトル
図40 オゾン水処理不織布の発光スペクトル
図41 紫外線処理不織布の発光スペクトル
図42 NaOH溶液処理不織布の発光スペクトル

発光スペクトル強度の結果より、aFeを不織布に固定化した状態でアントラセンを吸着していると考えられる改質条件はオゾン水処理及びNaOH溶液処理であり、次いでコロナ放電処理条件である。紫外線処理に関しては発光スペクトル強度から考えてほとんど吸着されていないと判断される。

aFe製造工程中でCMCを添加した条件で固定化させた不織布のアントラセン吸着状態は次の図43から図47のとおりである。

図43 改質未処理不織布の発光スペクトル
図44 コロナ放電処理不織布の発光スペクトル
図45 オゾン水処理不織布の発光スペクトル

図46 紫外線処理不織布の発光スペクトル

図47 NaOH溶液処理不織布の発光スペクトル

CMC添加時の発光スペクトル差は無添加時のデータと比較して、アントラセンを示していると考えている紫外領域には顕著に見られず、フィルター試験後の発光スペクトル強度も小さい。唯一400nm波長の発光スペクトルが吸着したアントラセンの可能性を示している。

全ての改質条件でアントラセンの吸着と思われる紫外領域の発光スペクトル強度が高く、その中でもオゾン水処理及び紫外線処理の方が特に吸着量が多いように見受けられる。また、コロナ放電処理及びNaOH溶液処理では400nmの発光スペクトル強度のみが高く、これは改質未処理のデータから得られた情報と一致している。

以上のフィルター試験の結果から、多環芳香族炭化水素の一種であるアントラセンの吸着効果は、aFeを固定化していない状態でも今回使用した合成繊維で構成された不織布には確認され、aFeを固定化してもその発光スペクトル強度はあまり変動が見られていない。改質条件別の差異は、CMC無添加でのaFe固定化状態の場合、370nm及び380nm並びに400nmの波長の強度平均をとった時、紫外線処理及びNaOH溶液処理が大きいが、改質未処理の不織布のみでの結果よりも値が小さい。このことはaFe固定化で使用したセラミック成形用バインダーにより不織布の織維表面が被覆されることでアントラセン吸着が抑制されているという見方ができるほか、織維表面のダメージが大きい改質処理が施されると吸着効果が高まるように見受けられる。

表6 CMC無添加時不織布のフィルター試験での紫外領域平均発光スペクトル強度

<table>
<thead>
<tr>
<th>改質条件</th>
<th>紫外領域平均発光スペクトル強度</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>382</td>
</tr>
<tr>
<td>②</td>
<td>896</td>
</tr>
<tr>
<td>③</td>
<td>1397</td>
</tr>
<tr>
<td>④</td>
<td>1045</td>
</tr>
<tr>
<td>未処理</td>
<td>962</td>
</tr>
<tr>
<td>不織布のみ</td>
<td>1728</td>
</tr>
</tbody>
</table>

表7 CMC添加時不織布フィルター試験での400nm発光スペクトル強度

<table>
<thead>
<tr>
<th>改質条件</th>
<th>400nm発光スペクトル強度</th>
</tr>
</thead>
<tbody>
<tr>
<td>①</td>
<td>1329</td>
</tr>
<tr>
<td>②</td>
<td>2700</td>
</tr>
<tr>
<td>③</td>
<td>3933</td>
</tr>
<tr>
<td>④</td>
<td>2060</td>
</tr>
<tr>
<td>未処理</td>
<td>999</td>
</tr>
<tr>
<td>不織布のみ</td>
<td>1728</td>
</tr>
</tbody>
</table>

4 結論

吸着を目的とするフィルター基材の開発の前段階として、aFeの微粒子化及び効果の高い固定化に
ついて検証を進めてきた。従来のように一度乾燥させ固形化した後の粉碎では、aFe結晶の粒度分布が大きくなり、バインダーを用いた不織布への固定化ではその歩留まりが懸念されたが、今回製造したaFeスラリーに直接バインダーを混合することでこの懸念は解消されると考える。しかしながら、微粒子化に関しては製造終了時の最終pH値や超音波処理、粘剤の添加等の条件を確認したところ、最終pH調整を除く手法で微粒子化を進めるとaFeの結晶成長が阻害されているように見受けられ、吸着効果に悪影響を与える可能性が考えられる。

固定化については、一般的な無機物固定用バインダー及びセラミック成形用バインダー両者ともに、目標とした繊維表面全体への着付に成功することができなかった。不織布はどちらかというと親油性が大きいため、有機溶媒系のバインダーを使用することで高い着付率が期待できる。しかし、固定化させる物質が親水性の大きいaFeスラリーであるため、有機溶媒との相性が良いとはいえず、バインダーを介した固定化に成功したとしてもaFeがバインダーに包埋された状態で繊維上に存在する可能性が非常に高い。

不織布の改質によりaFeの着付量や多環芳香族炭化水素の一種であるアントラセンの吸着能が向上する傾向にあることは確認できた。改質処理は繊維表面を酸化させることと同じであり、aFe及びバインダーとの相性は向上する。特に水酸化ナトリウム溶液による改質方法は繊維表面の窪みのほか、ケミルミネッセンスアナライザーによるアントラセン加熱時の特徴的な発光スペクトルの発見等最後まで検証できなかった課題がいくつか残った。この点については今後時間を許す限り確認したいと思っている。

今回の研究で、SEM観察におけるバインダー中のaFeと思われる粒子の発見や、水酸化ナトリウム溶液を用いた改質で発生した繊維表面の窪みのほか、ケミルミネッセンスアナライザーによるアントラセン加熱時の特徴的な発光スペクトルの発見等最後まで検証できなかった課題がいくつか残った。この点については今後時間が許す限り確認したいと思っている。

今回の報告にあたり、コロナ放電に関する知見の提供とサンプルのコロナ放電処理を快く引き受けてくださった株式会社第一メカテックの吉羽大輔氏、榎本研一氏に深く感謝いたします。

引用文献
1) 遠藤恭範：高知県立紙産業技術センター報告、第17号(2012)50-57
消費者庁は平成24年12月21日に「トイレクリーナーの表示に関する実態調査」を公表した。この公表は、当時、市販流通していたトイレクリーナーが水にほぐれないことや水洗トイレに詰まったことに連関する消費者からの情報をもとに、消費者庁が調査を行った結果によるものである。

当センターでは、このトイレクリーナーのほぐれやすさに関する調査について、消費者庁が行っていない「ほぐれやすさ試験」方法や考え方等の情報を聞き取り、独自にトイレに流せるとする製品群のほぐれやすさについて再現試験を実施した。

本報告は、その調査で得られた知見について述べるものである。

1. はじめに

消費者庁は、平成24年12月21日に「トイレクリーナーの表示に関する実態調査―「トイレに流せる」「水にほぐれる」といった表示の景品表示法上の考え方―」を公表した。

(https://www.caa.go.jp/representation/pdf/121221premiums_1.pdf参照)

一般にトイレに流すことができることが公定法により確認できる製品群はトイレットペーパーだけであり、JIS P4501「トイレットペーパー」により、その規格と試験方法が規定されている。

その他のトイレクリーナーやお尻ふき等については、公定法による規格と試験方法は無く、製造会社による自主規格及び試験方法でトイレに流すことができることが確認されている。

それら自主規格は各社によって異なるため、各社のトイレクリーナーはトイレットペーパーのようになる規格化されておらず、様々な紙、不織布シートが使用され、形状も一定ではない。さらにそれら自主規格は、ほとんどの場合、各社で部外秘となっており、客観的にトイレに流すことができることが証明されているか不明である。

消費者庁では、公定法のないトイレクリーナーについてJIS P4501「トイレットペーパー」のほぐれやすさ試験を当てはめて、製品パッケージにおいて「トイレに流せる」、「水にほぐれる」等と表示する商品は、JIS P4501「トイレットペーパー―ほぐれやすさ」の品質基準を満たしているなければならないとの見解を示した。

しかし、JIS P4501「トイレットペーパー」の試験方法は、トイレットペーパーのみを対象としているものであって、その他のトイレに流せる製品群を対象にしているものではない。トイレクリーナーをJIS P4501「トイレットペーパー」の試験に当てはめようとする時、試験方法のポイントとなる部分において、どのように解釈をすれば良いのか考慮しなくてはならない部分が出てきてしまう。

これはトイレットペーパーとトイレクリーナーの製品としての形態の差異から生じている。例えばトイレクリーナーは何らかの薬液に浸されている湿潤状態の製品が多いが、トイレットペーパーは乾燥している。この点だけでも試験片の調湿方法・乾燥方法・採取方法に幾通りも解釈が生じる。

JIS P4501「トイレットペーパー」の試験方法を読み解けば、その解釈は一定の方向に落ち着くものと考えられるが、消費者庁が決定した試験方法について、正確な解釈を用い運用するためには、消費者庁の考え方を組み込んだ試験方法で、再現試験を行う必要がある。

本報告は、消費者庁の考え方を組み込んだ試験
方法を業界全体に浸透させるため、調査の過程で得られた知見を含めて報告するものである。

２．供試品について
本報告では、市販されている「トイレクリーナー12種」、「乳幼児用お尻ふき3種」及び「大人用介護用お尻ふき7種」の調査結果を取り上げる。
さらに比較対照としてトイレに流すことができることが確認できる市販トイレットペーパー及び一般的にトイレに流すことを禁止している市販ティッシュペーパーを用いて水流によるほぐれやすさを比較検証した。

３．試験方法
３.1 市販製品の外観観察及び目付測定方法
各市販製品1組をそれぞれ包装材から取り出し、外観を目視で観察した。
供試品を構成している紙及び不織布シートを可能な限り分離した。分離した紙及び不織布シートをそれぞれ40℃の乾燥機内で恒量に達するまで覗かずに乾燥した。

上記の方法で分離が困難である場合、供試製品1組をそれぞれ包装材から取り出し、それぞれ40℃の乾燥機内で恒量に達するまで覗かずに乾燥した後、供試製品を構成している紙及び不織布シート可能な限り分離した。

上記の方法で分離が困難である場合、供試製品1組をそれぞれ包装材から取り出し、それぞれ40℃の乾燥機内で恒量に達するまで覗かずに乾燥した後、供試製品を構成している紙及び不織布シート可能な限り分離した。

上記の方法で分離した紙及び不織布シートをJIS P8111「紙、板紙及びパルプ―調湿及び試験のための標準状態」に規定された環境下で調湿した。

3.2 ほぐれやすさ試験の試験片の調製方法
3.2.1 試験片「1枚」の調製方法
上記「3.1 市販製品の外観観察及び目付測定方法」に記載されている方法で分離・乾燥・調湿した紙及び不織布シートを114×114mm角の大きさに裁断した。

3.2.2 試験片「1組」調製方法
各市販製品1組をそれぞれ包装材から取り出し、それぞれ40℃の乾燥機内で恒量に達するまで覗かずに乾燥した後、供試製品を構成している紙及び不織布シート可能な限り分離した。

上記の方法で分離した紙及び不織布シートをJIS P8124「紙及び板紙―目付測定方法」に準じて目付を測定した。目付測定の繰り返し回数は、約1/20m^2程度の試料5回とした。

3.3 ほぐれやすさ試験方法
3.3.1 ほぐれやすさ試験
ほぐれやすさ試験は、JIS P4501「トイレットペーパー―ほぐれやすさ」試験方法に基づき、300ml容量ビーカーと直径35mm、厚さ12mmの円盤状回転子及び300mlの水を用いて、「3.2 ほぐれやすさ試験の試験片の調製方法」に記載した方法で調製した紙及び不織布シートの試験片「1枚」を用いて試験を行った。

また、上記と同様の方法で、試験片「1組」を用いて試験を行った。
測定時間330秒まで測定して、回転子の回転数が540rpmまで回復していない試料の試験結果は「300秒以上」とした。

3.3.2 試験片の分散状態の観察
ほぐれやすさ試験中、試料のほぐれる様子を観察し、試験完了後の試験片の分散状態を下記の(A)〜(H)の8段階に分類した。

(A)速やかに分散する。（100秒以内）
(B)分散する。（100秒を超える）

注）繰り返し試験結果の内、100秒超えるものがある場合、(B)に分類される。
(C)試験片が破損・分散するが、繊維量が多いため水流の回転数が回復しない。

(D)試験片の破損・分散を認められるが、繊維がロープ状になった塊が残る。
(E)試験片の一部破損・分散を認められるが、繊維の塊が残る。
(F)試験片の一部破損・分散を認められるが、一部シートの原型を留めた繊維が残る。
(G)試験片の破損を認めせず、一部原型を留める。

(H)試験片の破損を認めない。原形を留める。
３．３．３ 標準のほぐれやすさ試験
トイレに流すことができることが確認できる市販トイレットペーパーを用いて、水流中に投入する試験片の数を1、2、・・・枚と増やして「３．３．１ ほぐれやすさ試験」に記載されている方法で試験を実施した。

３．４ 実験道具及び試験環境
本報告の試験では、特に記載が無い場合、JIS規格で規定されている実験器具を使用した。
また各試験は、特に記載が無い場合、JIS P8111 「紙、板紙及びパルプ―調湿及び試験のための標準状態」に規定された環境下で行った。
３．４．１ 試験片の調製
①乾燥機 通常の理化学実験用乾燥機
３．４．２ ほぐれやすさ試験
①マグネチックスターラー
HANNA instruments製MAGNETIC STIRRER HI 304N
注）上記スターラーは、仕様変更のため現在（少なくとも平成23年以降）市販されているものはJIS P4501のほぐれやすさ試験に使用できない。
②ビーカー
SIBATA製 300ml容ビーカー
③回転子
株式会社アイシス製テフロン回転子 両面十字型・直径35mm、厚さ12mm

４．試験結果
４．１ 市販製品の外観観察及び目付測定結果
市販製品の外観観察及び目付測定結果は表1及び図1〜6の通りである。

４．２ ほぐれやすさ試験結果
４．２．１ ほぐれやすさ試験結果及び分散状態の観察結果
試験片「1枚」によるほぐれやすさ試験結果及び分散状態の観察結果は、表2の通りである。
試験片「1組」によるほぐれやすさ試験結果及び分散状態の観察結果は、表3の通りである。

４．２．２ 標準のほぐれやすさ試験
標準のほぐれやすさ試験結果は、表4及び図7の通りである。

５．考察
本試験は、トイレに流せると公称する市販トイレクリーナーの水流によるほぐれやすさを検証するためのものである。
本報告では、市販されている「トイレクリーナー12種」、「乳幼児用お尻ふき3種」及び「大人用介護用お尻ふき7種」の調査結果を取り上げた。
さらに比較対照としてトイレに流すことができることが確認できる市販トイレットペーパー及び一般的にトイレに流すこと禁止している市販ティッシュペーパーを用いて水流によるほぐれやすさを比較検証した。
「３．３ ほぐれやすさ試験」では、試験条件をJIS P4501「トイレットペーパー—ほぐれやすさ」試験方法に従った。
試験片の調製の方法は、消費者庁の実態調査の方法に準じている。
試験に供した各トイレクリーナー及び各お尻ふきは全て何らかの薬液をシートに染み込ませた湿潤状態の製品であった。製品自体が湿潤状態であるので、乾燥状態が通常であるトイレットペーパーとは試験片の前処理が大きく異なることになる。
JIS P4501「トイレットペーパー」で引用されている規格JIS P8111「紙、板紙及びパルプ—調湿及び試験のための標準状態」の「調湿」では、標準状態下に置かれた試験片の重量が「1時間以上の間隔を置いて測定した連続2回の試料計量値の差が全質量の0.25％以下になった時に平衡に達した」となっている。
消費者庁は、JIS P4501「トイレットペーパー」の規格では直接的な表現で試料を乾燥することを明記されていないが、JIS P8111「試験用紙の前処理」の規格に基づくと、上記の「試料と標準状態との間に再現性のある平衡状態を確立」するためには、湿潤状態の製品は一度乾燥してから調湿することが求められている、と解釈している。
そのため湿潤状態の製品の試験片の調製では、試験片を40℃の乾燥機内で恒量に達するまで乾燥した後、JIS P8111「紙、板紙及びパルプ—調湿及び試験のための標準状態」に規定された環境下で調湿する方法を採用している。
実際、当センターで再現試験を行ったところ、市販製品毎にシートに含まれる水分量が同じではなく、また液の成分も水だけではない製品もあるため、多品種の製品を同じ方法で評価して、再現
性と試験方法の統一性を確保するためには、加熱乾燥による蒸発可能成分を除去する必要があると考える。

試料の乾燥の方法については、標準状態の大気中で長時間放置する方法でも可能と考える。

また、愛媛県産業技術研究所紙産業技術センターでは、JIS P8111「試料の前処理」を忠実に再現した、デシケーターと乾燥剤を用いた乾燥方法を開発している。

消費者庁は、直接問い合わせれば、試験方法について回答してもらえるが、試験規格の正しい運用方法や試験方法の解釈の仕方について、公表していない。業界全体に正しい試験方法・評価方法の解釈を浸透させることを希望する。

投入する試験片について、それぞれ試験片「1枚」で行う試験と試験片「1組」で行う試験を設定した。

目付の大きい各トイレクリーナー及び各お尻ふき「1組」と市販トイレットペーパーのほぐれやすさを比較するため、各お尻ふき「1組」とのほぐれやすさを比較することができる。

確実にほぐれることが確認できる試料C1トイレットペーパーで投入する試験片の枚数を増やして試験を行った。

表4の試験結果では、C1トイレットペーパーは、1枚投入では、ほぐれやすさ9秒、2枚重ねても17秒と速やかに水流中で分散して、JIS P4501「トイレットペーパー---ほぐれやすさ」の規格100秒以内を満たしていた。

試験片投入6枚（投入目付102g/m²）ではほぐれやすさ90秒であった。投入7枚目（投入目付119g/m²）では、投入した試料は粉々になり水流中を分散しているが、水中の繊維量が多くため回転子の回転数が500～520rpmの間で安定してしまい、測定時間330秒を経過しても回転子の回転数は540rpmに回復しなかった。

表4の試験結果を図示したものが、図7である。縦軸がほぐれやすさ測定時間（秒）を示し、横軸が投入した試料の目付（g/m²）を示している。この図で100秒以下のエリアで、JIS P4501「トイレットペーパー---ほぐれやすさ」の規格を満たす。

C1トイレットペーパーでは、投入6枚（投入目付102g/m²）までほぐれやすさが確保できるが、7枚目からほぐれやすさが低下する。

以上の結果から、ほぐれやすさ規格100秒以内を満たしている試料でも、通常のJIS P4501「トイレットペーパー---ほぐれやすさ」の試験方法で測定できる目付は119g/m²未満と推定できる。

今回試験に供した製品の1枚当たりの目付は、最大のものでも82.0 g/m²であるので、トイレットペーパーと同等のほぐれやすさであるならば、通常のJIS P4501「トイレットペーパー---ほぐれやすさ」の試験方法で測定できる目付は119g/m²未満と推定できる。

「3.1 市販製品の外観観察及び目付測定」では、各市販製品を構成しているシートを可能な限り分離して、面積、目付などの形状測定、重ね合わせ枚数、シートの製造方法などを分類した。
表1によると、パルプ紙で構成されているトイレクリーナー、トイレットペーパー及びティッシュペーパーは2～4枚のシートを重ね合わせていた。1枚当たりの目付が、トイレクリーナー5の82g/m²を除き、20～35g/m²程度であった。

湿式不織布で構成されているトイレクリーナー及びお尻ふきは、一枚当たりの目付が40～60g/m²と比較的大きく、一枚で構成されていた。

JIS P4501「トイレットペーパー」の試験方法によると、紙が複数枚重ねられているトイレットペーパーのほぐれやすさ試験では、重ねられているシートを1枚、1枚に引き離し、114×114mm角に裁断した試料のほぐれやすさを測定して、規定の時間内（100秒以内）でほぐれた場合に合格となる。

各市販トイレクリーナーをJIS P4501「トイレットペーパー」との試験方法の規定に当てはめると、2～4枚重ねられている薄いパルプシートのそれぞれ1枚、1枚のほぐれやすさが、規定の時間内（100秒以内）であれば合格となる。

しかし、表2の結果が示すとおり、1枚投入で、規格ほぐれやすさ100秒以内を満たしている製品は、トイレクリーナー5及び7、お尻ふき14及び17のみである。

これらは全てパルプシートを重ね合わせた製品であった。

その他のパルプシートを重ね合わせた製品は、試験開始から330秒経過しても回転子の回転数が540rpmに回復しなかった。特にトイレクリーナー1、3、4、8、9、10は分散の状態が(G)または(H)であり、水流による破壊をほとんど受け付けないものであった。

これはトイレに流してはいけないとされるティッシュペーパーの分散の状態(E)よりも悪い結果であり、各製造会社がどのような理由でこれらの製品をトイレに流しても良いと判断したのか分からない。

湿式不織布で構成されている各トイレクリーナー及びお尻ふきは、全て規格ほぐれやすさ100秒以内を満たすことができなかった。

トイレクリーナー2及びお尻ふき20は、試験片は破壊され原型を留めていないが、繊維の一部がロープ状に絡り合わさり、これが水流の回転数回復を妨げて試験時間330秒を経過しても回転子の回転数は540rpmに回復しなかった。これはパルプ繊維より長いレーヨン繊維が水流により絡み合ったためと推定される。しかし、これらの製品は水流によるシートの崩壊性を製品設計に取り入れているものと考えられる。

その他の湿式不織布で構成されている製品では、試験片の一部破損を認められるものの、大きな繊維の固まりが残ったり、原型を留めたシートが残ったりしていた。水流絞絡により繊維同士の絡まり合いが強く残るものと考えられる。

これまで当センターで実施したほぐれやすさ試験で、ほぐれやすさ品質基準を満たした湿式不織布製品は皆無であり、消費者庁の基準に当てはめると、現存の湿式不織布製品のほとんどが流通することができなくなるものと考えられる。

6. 消費者庁の実施したほぐれやすさ試験について

消費者庁が、平成24年12月21日に『トイレクリーナーの表示に関する実態調査―』を公表した。この実態調査で行われた試験については、当センターでは聞き取りを行い、その方法を再現した。この消費者庁が行ったほぐれやすさ試験は、JIS P4501「トイレットペーパーほぐれやすさ」に基づいているが、トイレットペーパーとトイレクリーナーの製品としての形態の差異から試験片の調湿・乾燥方法・採取方法において、独自の解釈の仕方が生じる。

それらも含めた試験方法を再度掲載する。

6.1 試験片の調製方法

①供試製品1組をそれぞれ包装材から取り出し、供試製品を構成している紙及び不織布シートを可能な限り分離した。

分離した紙及び不織布シートをそれぞれ40℃の乾燥機内で恒量に達するまで乾燥した後、JIS P8111「紙、板紙及びパルプ―調湿及び試験のための標準状態」に規定された環境下で調湿した。

②または、供試製品1組をそれぞれ包装材から取り出し、それぞれ40℃の乾燥機内で恒量に達するまで乾燥した後、供試製品を構成している紙及び不織布シートを可能な限り分離した。

分離した紙及び不織布シートをJIS P8111「紙、板紙及びパルプ―調湿及び試験のための標準状態」に規定された環境下で調湿した。
③上記①②の方法で分離ができない場合は、一体化した一枚の紙及び不織布シートとして試験に供した。

④上記の方法で分離・乾燥した紙及び不織布シートを114×114mm角の大きさに裁断した。
注)便宜上、分離した紙及び不織布シートは、正位置の状態の上側から第一層、第二層、第三層及び第四層と称した。
注)カットエンボスなど予め紙及び不織布シートにダメージを与える加工が施されている場合は、その旨を報告した。

6.2 ほぐれやすさ試験方法
ほぐれやすさ試験は、JIS P4501「トイレットペーパー—ほぐれやすさ」試験方法に基づき、300ml容ビーカーと直径35mm、厚さ12mmの円盤状回転子及び300mlの水を用いて、上記の方法で分離・乾燥・調湿・裁断した紙及び不織布シートについて、それぞれ試験片「1枚」で試験を行った。
繰り返し回数はそれぞれ5回である。

6.3 品質基準
品質基準は、JIS P4501「トイレットペーパー—ほぐれやすさ」試験方法に基づき、ほぐれやすさ試験結果の平均値が、品質基準100秒以内でなくてはならない。
複数枚の紙及び不織布シートを重ね合わせた製品の場合、重ね合わされたそれぞれの紙及び不織布シート全てが、ほぐれやすさ品質基準100秒以内でなくてはならない。一枚でもほぐれやすさ試験結果が100秒を超える場合は、その製品は、ほぐれやすさ品質基準を満たしていないことになる。
また「6.1 試験片の調製方法」に記載した方法で重ね合わせた紙及び不織布シートが引きはがせない場合は、一体化した一枚の紙及び不織布シートとして試験に供するが、この場合でも、ほぐれやすさ試験結果が100秒を超える場合は、その製品は、ほぐれやすさ品質基準を満たしていないことになる。

6.4 実験道具及び試験環境
特に記載が無い場合、JIS規格で規定されている実験器具を使用した。
また各試験は、特に記載が無い場合、JIS P8111「紙、板紙及びパルプ—調湿及び試験のための標準状態」に規定された環境下で行った。

7. おわりに
JIS P4501「トイレットペーパー」の規格はほぐれやすさだけでなく、坪量、破裂強さ、紙幅、巻の長さ、しん径及び巻取りの径が規定されている。これらによりトイレットペーパーの形状はどの製造企業でもほぼ同じ形状である。そのため試験片として製品の一部を採取したとしても、その試験片は製品を代表する試料となり得る。
それに対し、各トイレクリーナー及び各お尻ふきの1組当たり面積、乾燥重量等は、各社毎に異なる。そのため同じ大きさの試験片を採取しても、もとの製品シートの大きさ、重ね枚数が大きく違うので、それら試験片が各製品を代表する試料と考えることができるのか、また同じ大きさの試験片をそのまま比較して良いものなのか疑問が残る。

単純にJIS P4501「トイレットペーパー—ほぐれやすさ」試験の品質評価だけで、それぞれのトイレに流せる製品群を比較することは困難と考える。
そこで当センターでは、平成24年度からトイレに流せる製品群の評価システム（土佐方式）の開発に着手している。
<table>
<thead>
<tr>
<th>番号</th>
<th>区分</th>
<th>材質</th>
<th>膠法</th>
<th>面積 (cm²)</th>
<th>重ね枚数</th>
<th>1組当たり乾燥重量 (g)</th>
<th>1枚当たり乾燥重量 (g)</th>
<th>1組当たり目付 (g/m²)</th>
<th>1枚当たり目付 (g/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C1</td>
<td>パルプ</td>
<td>パルプ</td>
<td>251</td>
<td>2</td>
<td>0.85</td>
<td>0.42</td>
<td>33.7</td>
<td>16.9</td>
</tr>
<tr>
<td>2</td>
<td>C2</td>
<td>パルプ</td>
<td>パルプ纸</td>
<td>467</td>
<td>2</td>
<td>1.47</td>
<td>0.73</td>
<td>71.2</td>
<td>31.5</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>380</td>
<td>1</td>
<td>1.56</td>
<td>0.79</td>
<td>78.9</td>
<td>38.4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>400</td>
<td>4</td>
<td>2.34</td>
<td>0.78</td>
<td>84.7</td>
<td>33.9</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>374</td>
<td>2</td>
<td>6.13</td>
<td>3.07</td>
<td>164</td>
<td>64.5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>364</td>
<td>2</td>
<td>2.92</td>
<td>1.76</td>
<td>66.3</td>
<td>26.5</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>400</td>
<td>4</td>
<td>2.44</td>
<td>1.21</td>
<td>60.7</td>
<td>24.2</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>744</td>
<td>2</td>
<td>1.53</td>
<td>1.38</td>
<td>74.3</td>
<td>30.4</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>400</td>
<td>2</td>
<td>1.42</td>
<td>1.06</td>
<td>53.0</td>
<td>21.3</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>400</td>
<td>2</td>
<td>1.74</td>
<td>1.17</td>
<td>59.5</td>
<td>22.2</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>400</td>
<td>3</td>
<td>3.05</td>
<td>1.11</td>
<td>80.1</td>
<td>27.7</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>760</td>
<td>2</td>
<td>3.52</td>
<td>1.76</td>
<td>46.3</td>
<td>23.2</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>400</td>
<td>2</td>
<td>2.43</td>
<td>1.21</td>
<td>60.7</td>
<td>24.2</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>バルプ</td>
<td>エンボス・パルプ紙</td>
<td>205</td>
<td>1</td>
<td>1.39</td>
<td>0.96</td>
<td>68.8</td>
<td>34.4</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>600</td>
<td>1</td>
<td>2.17</td>
<td>1.11</td>
<td>57.7</td>
<td>27.4</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>205</td>
<td>1</td>
<td>1.35</td>
<td>0.96</td>
<td>68.8</td>
<td>34.4</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>800</td>
<td>2</td>
<td>2.48</td>
<td>1.17</td>
<td>64.4</td>
<td>32.7</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>400</td>
<td>1</td>
<td>2.17</td>
<td>1.11</td>
<td>57.7</td>
<td>27.4</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>380</td>
<td>1</td>
<td>1.35</td>
<td>0.96</td>
<td>68.8</td>
<td>34.4</td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>280</td>
<td>1</td>
<td>1.35</td>
<td>0.96</td>
<td>68.8</td>
<td>34.4</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>600</td>
<td>1</td>
<td>3.01</td>
<td>1.11</td>
<td>57.7</td>
<td>27.4</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>パルプ</td>
<td>エンボス・パルプ紙</td>
<td>400</td>
<td>1</td>
<td>1.35</td>
<td>0.96</td>
<td>68.8</td>
<td>34.4</td>
</tr>
</tbody>
</table>

但し、「C1トイレットペーパー」の1枚当たり面積は、ミシン目の間隔220mm、ロール幅114mmを1組として換算した。
図1 シート1枚当たりの面積
図2 シート1組当たりの重ね枚数
図3 シート1組当たりの乾燥重量
図4 シート1枚当たりの乾燥重量
図5 シート1組当たりの目付
図6 シート1枚当たりの目付
表2 試験片「1枚」によるほぐれやすさ試験結果及び分散状態の観察結果

<table>
<thead>
<tr>
<th>番号</th>
<th>区分</th>
<th>試験結果 1枚</th>
<th>分散の状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>ドシート</td>
<td>9秒</td>
<td>(A)速やかに分散する。（100秒以内）</td>
</tr>
<tr>
<td>C2</td>
<td>ドシート</td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>1</td>
<td>ドシート</td>
<td>300秒以上</td>
<td>(D)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>300秒以上</td>
<td>(A)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>300秒以上</td>
<td>(A)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>300秒以上</td>
<td>(A)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>300秒以上</td>
<td>(A)速やかに分散する。（100秒以内）</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>37秒</td>
<td>(A)速やかに分散する。（100秒以内）</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>29秒</td>
<td>(A)速やかに分散する。（100秒以内）</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>25秒</td>
<td>(A)速やかに分散する。（100秒以内）</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
</tbody>
</table>

表3 試験片「1組」によるほぐれやすさ試験結果及び分散状態の観察結果

<table>
<thead>
<tr>
<th>番号</th>
<th>区分</th>
<th>試験結果 1組</th>
<th>分散の状態</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>ドシート</td>
<td>17秒</td>
<td>(A)速やかに分散する。（100秒以内）</td>
</tr>
<tr>
<td>C2</td>
<td>ドシート</td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>300秒以上</td>
<td>(E)試験片の一部破損・分散を認めず、繊維の塊が残る。</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>54秒</td>
<td>(A)速やかに分散する。（100秒以内）</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>35秒</td>
<td>(A)速やかに分散する。（100秒以内）</td>
</tr>
</tbody>
</table>
表4 標品のほぐれやすさ試験結果

<table>
<thead>
<tr>
<th>試料名</th>
<th>C1 トイレットペーパー</th>
</tr>
</thead>
<tbody>
<tr>
<td>枚数(枚)</td>
<td>0 1 2 3 4 5 6 7</td>
</tr>
<tr>
<td>目付(g/m²)</td>
<td>0 16.9 33.7 51.1 68.2 85.2 102 119</td>
</tr>
<tr>
<td>ほぐれやすさ試験結果</td>
<td>0 9 17 24 29 41 90 600</td>
</tr>
</tbody>
</table>

図7 標品のほぐれやすさ試験結果

写真1 (A)速やかに分散する。(100秒以内) 写真2 (B)分散する。(100秒を超える)
写真3 (C)試験片の破損分散するが、繊維量が多いため水流の回転数は回復しない。
写真4 (D) 試験片の破損・分散を認められるが、繊維がロープ状になった塊が残る。

写真5 (E) 試験片の一部破損・分散を認めるが、繊維の塊が残る。
写真6 (F) 試験片の一部破損・分散を認めるが、一部シートの原型を留めた繊維の塊が残る。

写真7 (G) 試験片の破損を認めるが、ほぼ原型を留める。
写真8 (H) 試験片の破損を認めない。原形を留める。
文化財補修用竹紙製造法の確立
有吉正明
Preparation of Bamboo Paper Suitable for Conservation
Masaaki ARIYOSHI

1. 論文
竹繊維からなる紙「竹紙」を基底材料とした掛け軸、絵画、書籍等は日本に多く存在している。これらの紙文化財は時間の経過とともにさまざまな傷みが生じてくるため、紙文化財を修理する専門の修理所で適切な処置をされて後世に引き継がれている。文化財修理所で竹紙を補修材料とした紙文化財を修理する場合、同じ材料である竹紙を補修用紙として用いるのが一般的であるが、竹紙は伝統的に中国が産地であり、日本では作られてこなかった。そのため、昔から補修用紙として中国製の竹紙が用いられるのが一般的である。しかし近年、中国産の竹紙は原料や製造方法が不明瞭な場合が多い。

製造方法が不明な紙を補修用紙として使用することは、仮に紙の製造過程で保存性に悪影響を与えるような処理がなされていた場合、補修紙が劣化することで本紙に悪影響を及ぼす可能性がある。原料処理については作業性が悪く、特に繊維を単一繊維に離解するための打解工程に非常に時間を要する。試作では原料が少量だったので何とか処理することができたが、量が増えた場合は処理するのが大変になることが予想され改善が必要に思えた。竹紙の製造にあたっては、使用する竹の種類や採取した竹を加工する際の切断サイズや節の除去の有無、繊維の外皮の除去のタイミング、さらに自然発酵させる際の水漬け、石灰漬けの有無、煮熟方法、煮熟後の自然発酵の方法などさまざまな要素があり、これらは紙質や見た日に影響する。そこで、伝統的な製法を踏まえた上で各種条件にて試作を行った。

2. 繊維の伝統的製法について
竹紙は中国で伝統的に製造されていた紙である。繊維については諸説あるが、北宋時代には印刷技術の発展に伴い竹紙が多く使われるようになった。その頃の竹紙は黄色で脆い紙であったが、その後、製造技術が進み明時代後期には日常の書写、印刷に適した白い竹紙を製造することができたと言われている。明時代後期に宋応星によって著された「天工開物」は竹紙の製造法が詳しく記載された最も古い文献であり、原料として当年度の若竹を使用すること、水に長期間漬けて自然発酵させること、アルカリによる蒸煮等の工程が記載されている。

当センターでは以前に「天工開物」に記載された製造法を参考にして竹紙の製造を行った。その結果、白紫色の地合の良い竹紙を製造することができたが、紙質は硬めであった。硬い紙は湿度に対する伸縮が大きいため補修紙として用いた場合、本紙に悪影響を及ぼす可能性がある。また、原料処理については作業性が悪く、特に繊維を単一繊維に離解するための打解工程に非常に時間を要した。試作では原料が少量だったので何とか処理することがことができたが、量が増えた場合は処理するのが非常に大変になることが予想され改善が必要に思えた。竹紙の製造にあたっては、使用する竹の種類や採取した竹を加工する際の切断サイズや節の除去の有無、繊維の外皮の除去のタイミング、さらに自然発酵させる際の水漬け、石灰漬けの有無、煮熟方法、煮熟後の自然発酵の方法などさまざまな要素があり、これらは紙質や見た目に影響する。そこで、伝統的な製法を踏まえた上で各種条件にて試作を行った。

3. 試作方法の概要および試作紙の評価方法について
原料は当年生の竹を使用した。2010年、2011年、2012年にそれぞれ竹を採取し試作に用いた。採取した竹は各種条件にて原料処理を行い、手漉き和紙を製造する方法でシート化した。シートの乾燥は銀杏の干板に貼り付けて室内で乾燥した。試作した竹紙は坪量、厚さ、密度、引張強さ、クレム吸水度の物性試験のほか、pH、カナダ標準ろ水度を測定した。さらに、繊維長分布測定装置（ローレンツエン&ペットレー製パイバーテスタ）による測定を行い、長さ加重量平均繊維長、繊維幅、0.2mm以下微細繊維量、繊維粗度を調べた。
繊維粗度は通常は繊維の乾燥重量の値を用いて算出するが、今回は簡易的に測定するため、温度23℃、相対湿度50％の環境で4時間以上をおいたあの重量の値を用いて算出した値を繊維粗度とした。中国産の竹紙についても同様の試験を実施、比較することにより試作した竹紙の評価を行った。

4. 試作方法
4.1 2010年試作方法
以前「天工開物」を参考にして行った試作では竹を打解により単繊維化するのに非常に労力を要したため、竹の採取時期をその時よりも早め、柔らかい部分と硬い部分に分けて紙を試作し違いを見ることにした。竹は孟宗竹を用い、高さ2～6mの竹を中心に採取した（6m以上の竹も採取した）。竹は枝葉が出ておらず茶色の皮をかぶっていた。伐採した竹を柔らかい部分、硬い部分に分け、さらにそれぞれを皮あり、皮除去に分けて試作を行った。また、No.2, 4については2回目の煮熟を行わない場合と行う場合をまとめた。それぞれの試作工程を表1にまとめた。

4.2 2011年試作方法
竹紙の伝統的な製造方法に関する文献（眞室幸教著「清国製紙業地視察録」2）、巌如煜著「三省辺防備覧」3）、宋応星著「天工開物」4）に記載された製法を参考にした試作を行った。それぞれの文献によると伝統法では竹を自然発酵させた後アルカリ液により長期間の蒸煮を行うが、長時間の蒸煮は作業性が悪いため、数時間のアルカリ煮熟に置き換えた。また、竹の種類については記載がある場合とない場合があり、また記載された中には日本では入手困難な竹もあった。今後竹紙を製造することを考慮して、今回はいずれの試作も日本で入手しやすい孟宗竹を用いた。採取した竹と加工の様子を写真1, 2に示した。また、それぞれの試作工程を表2にまとめた。

4.3 2012年試作方法
作業効率の向上について検討を行うため、自然発酵による方法を基準としつつ、伝統的製法とは異なる方法で試作した。また、流水による自然発酵についての検討を行った。5月と6月に竹を伐採しそれぞれの原料を用いた場合の違いを比較した。それぞれの試作工程を表3にまとめた。

表1 2010年試作工程表

<table>
<thead>
<tr>
<th>工程</th>
<th>No.1</th>
<th>No.2-1</th>
<th>No.2-2</th>
<th>No.3</th>
<th>No.4-1</th>
<th>No.4-2</th>
<th>No.4-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>竹の使用部分</td>
<td>柔</td>
<td>硬</td>
<td>柔</td>
<td>硬</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>①緑皮の除去</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>除去</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>②自然発酵</td>
<td>水漬け</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>③取出し・洗浄</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>④石灰液漬け</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑤アルカリ煮熟</td>
<td>消石灰</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑥洗浄</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑦アルカリ煮熟</td>
<td>-</td>
<td>-</td>
<td>木灰 + 藁灰</td>
<td>-</td>
<td>-</td>
<td>木灰</td>
<td>木灰 + 藁灰</td>
</tr>
<tr>
<td>⑧洗浄</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑨打解</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⑩抄紙・乾燥</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
表2 2011年試作工程表

<table>
<thead>
<tr>
<th>工程</th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
<th>No.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>①自然発酵</td>
<td>水漬け</td>
<td>ホ水</td>
<td>ホ水</td>
<td>ホ水</td>
</tr>
<tr>
<td>②アルカリ煮熟</td>
<td>消石灰煮熟後、洗浄し青皮を除去、さらに水に10日間浸漬</td>
<td>消石灰煮熟後、洗浄し青皮を除去、さらに水に10日間浸漬</td>
<td>消石灰煮熟後、洗浄し青皮を除去、さらに水に10日間浸漬</td>
<td>消石灰煮熟後、洗浄し青皮を除去、さらに水に10日間浸漬</td>
</tr>
<tr>
<td>③洗浄・水漬け</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>④自然発酵</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>⑤打解</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>⑥抄紙・乾燥</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>参考文献</td>
<td>雲国製紙業地視察録</td>
<td>三省辻防備覧</td>
<td>天工開物</td>
<td>連史紙の伝統製造法とその復元</td>
</tr>
</tbody>
</table>

表3 2012年試作工程表

<table>
<thead>
<tr>
<th>工程</th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
<th>No.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>①自然発酵</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>②アルカリ煮熟</td>
<td>消石灰</td>
<td>消石灰</td>
<td>消石灰</td>
<td>消石灰</td>
</tr>
<tr>
<td>③打解</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>④洗浄</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>⑤自然発酵</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
<tr>
<td>⑥抄紙・乾燥</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
<td>〇</td>
</tr>
</tbody>
</table>

写真1 採取した竹（2011年）
写真2 竹の加工の様子（2011年）
5. 結果と考察

5.1 2010年試作について
水漬けによる自然発酵後、柔らかい竹はそうめん状にばらばらになっていた。また、硬い竹はそうめん状にばらばらになっている部分となっていない部分があった。原料の色は薄い赤茶色であった。柔らかい部分は発酵後、繊維同士が絡まり、ごみや不純物を取りにくくなる。また、柔らかい部分を使用すると紙が硬くなりやすい（パリパリな感じ）が、その割に硬い結果繊維も多く、打解時間の短縮にならなかった。そのため、柔らかすぎる竹は原料に向かないと思われる。硬い部分は発酵後に、繊維同士が絡まる事もなく、ごみや不純物を容易に取り除くことができた。また、石灰煮熟の後、木灰液などで2回目の煮熟を行うと白さが増し、色は赤みのある色から黄みのある色に変化した。さらに、水漬けの後に石灰液に漬けると、水漬けのみの場合に比べて白さが増し、結果繊維も少なくなった。

試作した竹紙について各種試験を行った結果を表4にまとめた。No.1、3は硬いパリパリな感じの紙になり、補修用紙としては不適であるため、No.2、4について試験を行った。また、中国産の竹紙についても同様の試験を行い表5にまとめ比較を行った。

その結果、2010年に試作した竹紙はいずれも中国産の竹紙に比べて繊維が短くて繊維幅も狭かった。繊維粗度については大きな違いが見られなかった。繊維粗度は数値が大きいほど繊維が剛直で紙にした場合柔らかくなる傾向がある。ろ水度については中国産の竹紙に比べてかなり低く0.2mm以下の微細繊維の量も多かった。試作した紙は中国産の紙に比べると硬く繊維が十分に成長していないことが影響していると考えられる。

5.2 2011年試作について
観室幸教著「清国製紙業地視察録」を参考にしたNo.1は石灰液に漬けて自然発酵させた後、竹を取り出すと、ほとんどはそうめん状になっている。原料の色は薄い赤茶色であった。柔らかい部分は発酵後に、繊維同士が絡まり、ごみや不純物を取りにくくなる。また、柔らかい部分を使用すると紙が硬くなりやすい（パリパリな感じ）が、その割に硬い結果繊維も多く、打解時間の短縮にならなかった。そのため、柔らかすぎる竹は原料に向かないと思われる。硬い部分は発酵後に、繊維同士が絡まる事もなく、ごみや不純物を容易に取り除くことができた。また、石灰煮熟の後、木灰液などで2回目の煮熟を行うと白さが増し、色は赤みのある色から黄みのある色に変化した。さらに、水漬けの後に石灰液に漬けると、水漬けのみの場合に比べて白さが増し、結果繊維も少なくなった。

試作した竹紙について各種試験を行った結果を表4にまとめた。No.1、3は硬いパリパリな感じの紙になり、補修用紙としては不適であるため、No.2、4について試験を行った。また、中国産の竹紙についても同様の試験を行い表5にまとめ比較を行った。

その結果、2010年試作に比べて竹の伐採時期を遅らせたが、中国産竹紙に比べると紙の密度は高く繊維長は短く繊維粗度は低かった。繊維長は50～60cm、繊維幅は1.5～2.0mm、繊維粗度は数値が大きいほど紙は柔らかくなる傾向がある。ろ水度については中国産の竹紙に比べてかなり低く0.2mm以下の微細繊維の量も多かった。試作した紙は中国産の紙に比べると硬く繊維が十分に成長していないことが影響していると考えられる。

5.3 2012年試作について
観室幸教著「清国製紙業地視察録」を参考にしたNo.1は石灰液に漬けて自然発酵させた後、竹を取り出すと、ほとんどはそうめん状になっている。原料の色は薄い赤茶色であった。柔らかい部分は発酵後に、繊維同士が絡まり、ごみや不純物を取りにくくなる。また、柔らかい部分を使用すると紙が硬くなりやすい（パリパリな感じ）が、その割に硬い結果繊維も多く、打解時間の短縮にならなかった。そのため、柔らかすぎる竹は原料に向かないと思われる。硬い部分は発酵後に、繊維同士が絡まる事もなく、ごみや不純物を容易に取り除くことができた。また、石灰煮熟の後、木灰液などで2回目の煮熟を行うと白さが増し、色は赤みのある色から黄みのある色に変化した。さらに、水漬けの後に石灰液に漬けると、水漬けのみの場合に比べて白さが増し、結果繊維も少なくなった。

試作した竹紙について各種試験を行った結果を表4にまとめた。No.1、3は硬いパリパリな感じの紙になり、補修用紙としては不適であるため、No.2、4について試験を行った。また、中国産の竹紙についても同様の試験を行い表5にまとめ比較を行った。

その結果、2010年試作に比べて竹の伐採時期を遅らせたが、中国産竹紙に比べると紙の密度は高く繊維長は短く繊維粗度は低かった。繊維長は50～60cm、繊維幅は1.5～2.0mm、繊維粗度は数値が大きいほど紙は柔らかくなる傾向がある。ろ水度については中国産の竹紙に比べてかなり低く0.2mm以下の微細繊維の量も多かった。試作した紙は中国産の紙に比べると硬く繊維が十分に成長していないことが影響していると考えられる。
度は大きかった。さらに、中国製の竹紙と物性値の比較を行った。2011年、2012年に試作した竹紙と中国製竹紙の密度とろ水度の関係および密度と繊維粗度の関係をそれぞれ図1、2に示した。2012年に試作した竹紙は、2011年に試作した竹紙に比べて中国製竹紙の特性に近づいている事が分かる。

さらに、No.1、2、4と中国産の竹紙「白蓮」について、ISO-5630-5に基づいて加速劣化試験を行った。試験結果を表8に示す。ISO-5630-5では所定量の試料を規定のチューブに入れ密閉した後、100℃のオーブンに120時間（5日）置いて加速劣化させた後取り出し、加速劣化前後の試料の耐折試験および引裂試験を行う。加速劣化前後の試験結果を比較し、加速劣化前後の試験結果に対する加速劣化後の試験結果をパーセントで表した値「保持率」を安定性の基準としており、保持率が耐折試験において50%以上、かつ引裂試験において85%以上の場合、その試料は安定と判定される。

耐折試験はJIS P 8115の試験方法に準じて試験荷重150gで試験を行った。また、引裂試験はJIS P 8116に基づいて行い、No.1、2、4については重ね枚数2枚、白蓮については重ね枚数4枚で試験を実施した。また、その他の評価試験として、加速劣化後の紙の色変化（色差）をJIS P 8150に準じて測定した。No.1、2、4については20枚、白蓮については40枚の試験片を用い、2回測定した平均を試験結果とした。

その結果、耐折試験についてはいずれの試料も基準値を超えており特にNo.2、4は加速劣化前後での変化がほとんどなかった。一方、引裂試験についてはNo.4のみが基準値を超えており、その他は基準値以下であった。そのため、No.4については安定である基準を満たしていたが、それ以外は満たしていないかった。しかし、No.1、2については、耐折、引裂いずれの試験も中国産の白蓮の試験結果を上回っていた。また、色差試験の結果、No.1、2の色変化が最も小さく、色変化が最も大きかったのは白蓮であった。

表4 2010年試作竹紙の各種試験結果

<table>
<thead>
<tr>
<th></th>
<th>pH</th>
<th>ろ水度 (CSF)</th>
<th>長さ加重平均繊維長 (mm)</th>
<th>繊維幅 (μm)</th>
<th>0.2mm以下微細繊維 (%)</th>
<th>繊維粗度 (μg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.2-1</td>
<td>7.4</td>
<td>395</td>
<td>0.90</td>
<td>13.9</td>
<td>15.7</td>
<td>43.0</td>
</tr>
<tr>
<td>No.2-2</td>
<td>6.3</td>
<td>420</td>
<td>0.95</td>
<td>13.3</td>
<td>13.7</td>
<td>42.5</td>
</tr>
<tr>
<td>No.4-1</td>
<td>7.3</td>
<td>-</td>
<td>1.02</td>
<td>14.2</td>
<td>11.4</td>
<td>44.8</td>
</tr>
<tr>
<td>No.4-2</td>
<td>7.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No.4-3</td>
<td>7.6</td>
<td>-</td>
<td>1.09</td>
<td>14.0</td>
<td>10.8</td>
<td>46.1</td>
</tr>
</tbody>
</table>

表5 中国製竹紙の各種試験結果

<table>
<thead>
<tr>
<th></th>
<th>密度 (g/cm³)</th>
<th>pH</th>
<th>ろ水度 (CSF)</th>
<th>長さ加重平均繊維長 (mm)</th>
<th>繊維幅 (μm)</th>
<th>0.2mm以下微細繊維 (%)</th>
<th>繊維粗度 (μg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>白蓮</td>
<td>0.41</td>
<td>7.9</td>
<td>604</td>
<td>1.21</td>
<td>15.6</td>
<td>8.4</td>
<td>78.2</td>
</tr>
<tr>
<td>毛辺</td>
<td>0.35</td>
<td>5.7</td>
<td>629</td>
<td>1.27</td>
<td>17.2</td>
<td>6.4</td>
<td>85.3</td>
</tr>
<tr>
<td>竹紙（梁平県産）</td>
<td>0.23</td>
<td>6.8</td>
<td>704</td>
<td>1.32</td>
<td>18.4</td>
<td>3.6</td>
<td>100</td>
</tr>
<tr>
<td>竹紙（寧波産）茶</td>
<td>0.24</td>
<td>6.8</td>
<td>685</td>
<td>1.35</td>
<td>18.1</td>
<td>4.7</td>
<td>89.2</td>
</tr>
<tr>
<td>竹紙（寧波産）白</td>
<td>0.39</td>
<td>-</td>
<td>-</td>
<td>1.11</td>
<td>16.3</td>
<td>8.0</td>
<td>88.1</td>
</tr>
</tbody>
</table>

-57-
表6 2011年試作竹紙の各種試験結果

<table>
<thead>
<tr>
<th></th>
<th>密度 (g/cm³)</th>
<th>pH</th>
<th>ろ水度 (CSF)</th>
<th>長さ加重平均繊維長 (mm)</th>
<th>繊維幅 (μm)</th>
<th>0.2mm以下微細繊維 (%)</th>
<th>繊維粗度 (μg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.1</td>
<td>0.53</td>
<td>-</td>
<td>475</td>
<td>0.91</td>
<td>13.9</td>
<td>13.6</td>
<td>52.6</td>
</tr>
<tr>
<td>No.2</td>
<td>0.47</td>
<td>6.8</td>
<td>395</td>
<td>0.98</td>
<td>13.3</td>
<td>13.1</td>
<td>40.9</td>
</tr>
<tr>
<td>No.3</td>
<td>0.48</td>
<td>6.6</td>
<td>490</td>
<td>0.94</td>
<td>13.4</td>
<td>13.3</td>
<td>41.2</td>
</tr>
<tr>
<td>No.4</td>
<td>0.39</td>
<td>6.7</td>
<td>530</td>
<td>1.01</td>
<td>14.1</td>
<td>11.2</td>
<td>50.5</td>
</tr>
</tbody>
</table>

表7 2012年試作竹紙の各種試験結果

<table>
<thead>
<tr>
<th></th>
<th>密度 (g/cm³)</th>
<th>pH</th>
<th>ろ水度 (CSF)</th>
<th>長さ加重平均繊維長 (mm)</th>
<th>繊維幅 (μm)</th>
<th>0.2mm以下微細繊維 (%)</th>
<th>繊維粗度 (μg/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.1</td>
<td>0.33</td>
<td>6.6</td>
<td>695</td>
<td>1.47</td>
<td>16.2</td>
<td>6.2</td>
<td>86.7</td>
</tr>
<tr>
<td>No.2</td>
<td>0.28</td>
<td>6.5</td>
<td>708</td>
<td>1.45</td>
<td>16.4</td>
<td>5.5</td>
<td>87.0</td>
</tr>
<tr>
<td>No.3</td>
<td>0.34</td>
<td>6.3</td>
<td>687</td>
<td>1.43</td>
<td>16.4</td>
<td>6.4</td>
<td>88.4</td>
</tr>
<tr>
<td>No.4</td>
<td>0.24</td>
<td>6.5</td>
<td>737</td>
<td>1.61</td>
<td>17.8</td>
<td>3.1</td>
<td>120</td>
</tr>
</tbody>
</table>

表7のつづき

<table>
<thead>
<tr>
<th></th>
<th>裂断長 (タテ+ヨコ) (km)</th>
<th>クレム吸水度 (タテ+ヨコ) (mm/5分)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.1</td>
<td>8.2</td>
<td>134</td>
</tr>
<tr>
<td>No.2</td>
<td>6.5</td>
<td>169</td>
</tr>
<tr>
<td>No.3</td>
<td>10.6</td>
<td>139</td>
</tr>
<tr>
<td>No.4</td>
<td>4.6</td>
<td>42</td>
</tr>
</tbody>
</table>

図1 試作紙及び中国産竹紙の密度と繊維粗度の関係

図2 試作紙及び中国産竹紙の密度とろ水度の関係
表8 2012年試作竹紙と中国産竹紙「白蓮」の加速劣化試験結果

<table>
<thead>
<tr>
<th></th>
<th>耐折試験保持率（％）</th>
<th>引裂試験保持率（％）</th>
<th>色差△E</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.1</td>
<td>67</td>
<td>71</td>
<td>2.1</td>
</tr>
<tr>
<td>No.2</td>
<td>101</td>
<td>74</td>
<td>2.2</td>
</tr>
<tr>
<td>No.4</td>
<td>110</td>
<td>87</td>
<td>3.2</td>
</tr>
<tr>
<td>白蓮</td>
<td>61</td>
<td>65</td>
<td>5.4</td>
</tr>
</tbody>
</table>

6. まとめ

各種条件にて竹紙の試作及び分析を行い、中国製の竹紙と比較することにより評価を行った。原料となる竹は文献によるとハッキョウチクやジチクなど中国でしか入手できない竹が用いられている場合もあった。中国には約1,000種類もの竹がありその中で特に紙にするのに向いているものが用いられたと想像される。また、文献には詳細は記載されておらず、気候も異なるため文献どおり再現することは難しい。そのため、文献の方法を参考にして、作業性や今後継続的に生産することを考慮した試作を行い、試作紙の保存性について評価試験を行った。今回試作した竹紙のうち中国産竹紙に近い特性をもつ2012年に試作した3種類の竹紙と中国産の白蓮について、ISO-5630-5に準じて加速劣化試験を行い、紙の保存性について評価を行った結果、2012年試作のNo.4は安定性の基準を満たしていたが、No.1、2、中国産の白蓮については引裂試験の結果が基準値以下であり、安定性の基準は満たしていなかった。しかし、No.1、2は、耐折、引裂いずれの試験も中国産の白蓮の試験結果を上回っており、また、加速劣化前後の色変化も小さいことが分かった。

引用文献
1) 有吉正明、佐味義之：高知県立紙産業技術センター報告、第12号(2007)76-81
2) 眞室幸教：清国製紙業地視察録、支那製紙業、63-93
3) 藩吉星著、佐藤武敏訳：中国製紙技術史、平凡社、216-218
4) 藩吉星著、佐藤武敏訳：中国製紙技術史、平凡社、212-214
5) 陳剛：和紙文化研究、第18号(2010)62-71
1. はじめに
エレクトロスピニング装置が、医療分野や電池のセパレーター、フィルターなど様々な分野で注目を集め数年が経つが、溶融紡糸メルトブロー装置とは異なり、ほとんど実用化されていない。この要因として、ナノファイバー紡糸制御の困難さが挙げられる。ナノファイバーは、紡糸する環境（パラメーター）から非常に影響を受けやすく、また、パラメーターの種類も多いことから、安定的な生産に向け様々なノウハウが必要になる。そこで、当センターでは、装置の特性を検討するのに適したポリビニルアルコール（PVA）を用いて、長時間紡糸したときの環境がナノファイバーの状態にどのような影響をあたえるかを検討した。

2. 実験操作
2.1 試料
原料には、PVA（クラレ株式会社製、ポバール）を用いた。試料の詳細を表1に示す。

<table>
<thead>
<tr>
<th>分類</th>
<th>銘柄</th>
<th>重合度</th>
<th>揮発分 %</th>
<th>酵酸ナトリウム %</th>
<th>けん化度 mol %</th>
<th>純分 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>完全けん化</td>
<td>PVA-110</td>
<td>Mw＝～1000</td>
<td>5.00以下</td>
<td>1.5以下</td>
<td>98.00～99.00</td>
<td>94.00以上</td>
</tr>
<tr>
<td></td>
<td>PVA-120</td>
<td>Mw＝～2000</td>
<td>5.00以下</td>
<td>1.0以下</td>
<td>98.00～99.00</td>
<td>94.00以上</td>
</tr>
<tr>
<td>部分けん化</td>
<td>PVA-210</td>
<td>Mw＝～2000</td>
<td>5.00以下</td>
<td>1.0以下</td>
<td>87.00～89.00</td>
<td>94.00以上</td>
</tr>
<tr>
<td></td>
<td>PVA-220</td>
<td>Mw＝～4000</td>
<td>5.00以下</td>
<td>1.0以下</td>
<td>87.00～89.00</td>
<td>94.00以上</td>
</tr>
</tbody>
</table>

2.2 ノズル方式紡糸法
エレクトロスピニング装置は、EDSナノファイバー大量生産装置（カトーテック株式会社製）を使用した。方式としては、ノズル方式（ノズル本数：8本、針：G21）で、上下の電極の間（1.5m）を下から上へ紡糸する。印加電圧は、従来のようにノズルに直接かけるのではなく、上下間の電極の間にノズルを挟み込み、ポリマー溶液に直接電圧をかける仕様である。

2.3 繊維径の計測
ナノファイバーの繊維径は、走査型電子顕微鏡を用いてランダムに計20本を測定し、その平均値とした。
2.4 温度及び湿度の計測

温度及び湿度の計測は、ナノファイバーの紡糸部（下部）と補修部（上部）にセンサー（Thermo Recorder株式会社ティアンドデイ製）を取り付け、15秒間隔で一定時間計測した。また、基材には、ティシュ用原紙（幅：500mm、目付：31.5g/m²）を用いた。

3. 結果及び考察

3.1 印加電圧が及ぼす繊維径への影響

印加電圧を30kV、40kV、50kVにしたときの、けん化度、重合度の異なるPVAの繊維径への影響について検討した。ポリマーの粘度は、各ポリマーで50～100mPa・s、220～280mPa・s、350～410mPa・s、700～880mPa・sの4種類を調製し、紡糸した。

まず、PVA-110及びPVA-120、PVA-220の場合は、50～100 mPa・sのとき、ナノファイバーを紡糸できなかった。印加電圧と異なる粘度を有するポリマーの繊維径との関係について検討した結果を図1～4に示す。電圧を30kVにして紡糸した方が、粘度による繊維径への影響は、明確に見られた。粘度が高くなるにつれて繊維径が大きくなる傾向が見られた。一方、印加電圧を40、50kVにした場合は、ポリマーの種類にもよるが、繊維径への粘度の影響が小さくなり、30kVのときに比較して繊維径が小さくなる傾向があることが分かった。この結果は、これまで報告されている文献の結果と一致している。

3.2 長時間紡糸した際の環境変化

温度を24℃、湿度を34～38％RHに保った状態で、PVA-210を3時間紡糸した際の目付量の変化について検討した。紡糸する室内の温度及び湿度は、一定に保ち、サクションには冷却トラップをかけ、乾燥
させた空気を室内に戻すようにした。湿度に関しては、3時間で約2%低下したが、温度・湿度ともに大きな変化は見られなかった。しかし、1時間を経過した前後、ノズル先端に液がくもりができることにより、均一なファイバーの紡糸が困難になった。ノズル先端の液だまり解消は長時間紡糸には必要不可欠である。そこで、現時点でほぼ安定して紡糸可能な最初の1時間のみで、印加電圧と目付の増減について比較した。条件は以下のとおりである。

温度: 24℃（±1℃）
湿度: 34〜38%RH
ポリマー粘度: 140mPa・s
設定目付: 0.92g/m²
基材: ティシュ用原紙（目付誤差範囲: 0.17g/m²）

目付のばらつきが大きい最初と最後の10分を除いた範囲での目付量の増減を比較した結果、電圧を30kV印加した場合は、平均目付が1.17g/m²（偏差: 0.25g/m²）であるのに対し、印加電圧を40kVにした場合の平均目付は、0.80g/m²（偏差: 0.21g/m²、捕集効率: 87%）であった。また、どちらも、最大目付と最小目付のばらつきが30〜40%見られた。さらに、印加電圧が30kVの場合は、平均目付量が設定目付量を超えた。これは、30kVと40kVの湿度の違いを比較すると、ナノファイバーと同時に液滴も多く発生していることが原因と考えられる。この結果より、印加電圧が30kVでは、電圧が低く、ポリマー溶液の表面張力に対しクーロン反発が小さいと考えられる。

図5 Basis weight change over time in different applied voltage
図6 Relative humidity change over time in different applied voltage
近森啓一 金子真由美 関 正純

The study of Washi(Japanese paper) production figure in 1874-1923

Keiichi CHIKAMORI Mayumi KANEKO Masazumi SEKI

古い統計資料の原本を手軽に見ることは困難である。しかし、近年のインターネットの普及に伴い、いつでもどこでも誰もが容易に閲覧できる資料が出てきた。1884（明治17）年から1923（大正12）年における農商務省統計表1)はインターネットに公表されており、紙の統計を閲覧できる。今までは統計表を引用した文献を見ることで部分的に統計表を知ることしか出来なかった。この機会に紙の統計をまとめてみた。

その結果、和紙という言葉が最初に農商務省統計表に登場するのは1894（明治27）年の統計であること、西洋紙の価額が和紙の価額を上回ったのは1913（大正2）年の統計であることなどを確認した。

Abstract

It is usually valuable statistics will be be limited viewing of the original. However, with the spread of the Internet in recent years, statistics that anyone can be viewed anywhere at any time came out. The Department of Agriculture and Commerce statistics table in 1923-1884 has been published on the Internet. Until now, we could know the part of statistics by reading the quotes of literatures. I decided to try to summarize the paper part of the statistics.

It was confirmed as a result, the first timing of appearance of Washi(Japanese paper) in the statistics is in 1894, the first timing of production value of Western paper was higher than the production value of Japanese paper was in 1913 and all that.

Keywords : Washi(Japanese paper), statistic, production figure
いる府県数は17である。当時は3府41県であったため、1884（明治17）年統計及び1885（明治18）年統計は全国の統計ではない。

③沖縄が記載されていなかった年は1887（明治20）年、1892（明治25）年、1894（明治27）年、1896（明治29）年、1900（明治33）年であった。

①北海道の名称の記載はあるものの、集計値が記載されていない年は1894（明治27）年及び1895（明治28）年であった。

⑤1922（大正11）年統計において、神奈川には前年度の値を参考として記していた。1922（大正12）年の関東大震災により集計出来なかった可能性がある。

⑥府県数については1888（明治21）年12月3日に香川県が分立して府県数が47と現在と同じとなった。但し、1887（明治20）年統計には香川県が掲載されていた。分立以前に集計された可能性がある。また、神奈川の北多摩郡、南多摩郡、西多摩郡は1903（明治26）年4月1日に東京へ移管された。

⑦集計の数量や金額については様々に表記されているが、数量及び価額と統一して表した。価額が生産額なのか出荷額なのかについては、統計表に示されていない。

⑧集計は年度で行われたと考えるが、表記に従い年と表現した。

⑨印刷局の生産が統計に含まれるのは1898（明治31）年以降であった。

3. 考察

3.1 和紙という言葉の出現

表2に1892年までの統計に記載された紙の分類の変化を示す。1874（明治7）年には、わが国で初めて有恒社が洋式製紙工場を稼動するが、1874（明治7）年統計の区分は紙類だけである。1884（明治17）年統計には紙類の一区分として西洋紙の名称が用いられている。16府県の統計ではあるが、西洋紙の数量は全体の約0.27%を占めている。翌年の1885（明治18）年統計では、西洋紙以外を日本紙と括っている。こちらも17府県の統計ではあるが、西洋紙の価額は全体の約0.15%を占める。1887（明治20）年統計では西洋紙の価額は全体の約8.2%を占めるが、日本紙との括りは無い。

1892（明治25）年統計に初めて和紙の名称が用いられ、和紙及び西洋紙はそれぞれ独立した項目として集計される。この年の紙全体の価額に対する西洋紙の価額の占める割合は約16.5%である。この経緯は、まず、西洋紙の需要が生まれ、その後、従来の紙を和紙と呼ぶようになったとされることが従っている。

統計には和紙及び西洋紙の定義は記載されていないが統計表から考察してみる。西洋紙の統計を府県別に見ると、1884（明治17）年統計の愛知、1885（明治18）年統計の山形にある2社で、印刷局抄紙部は東京にあるため、これらの紙は手すきであると考えられる。また、1904（明治37）年統計の西洋紙において、製造所の一覧に一日就業職工数が男女1名である藤代製造所及び茶畑製造場の記載があるが、原動力、機関数及び公称馬力に記載が無いため手すきだった可能性がある。さらに、1906（明治39）年には、土佐合資会社及び芸防抄紙会社にて機械抄きが始まるが、西洋紙の統計の製造所にこれらの社名は掲載されていないため和紙として集計されたようだ。これらを考えると、手すき又は機械抄きとの違いだけでなく西洋紙と和紙を分類しないようだ。

3.2 全国の統計の推移

3.2.1 和紙及び西洋紙の全国の価額推移

図1に各年における和紙及び西洋紙共に全国の価額を示す。但し、1885（明治18）年の和紙の価額は全国の統計ではない。また、1885（明治18）年及び1887（明治20）年統計では西洋紙及び洋製紙以外を和紙として取り扱った。

和紙及び西洋紙の価額は年とともに増加し、1914（大正3）年頃から急速に上昇して、1920（大正9）年をピークにその後、下降している。1914〜1918年の第一次世界大戦により、日本は戦時需要による好況の後、終戦によって需要が一段落したため不況になったことが原因と考えられる。
和紙の価額は1912（大正元）年まで西洋紙の価額を上回っており、その後は西洋紙の価額が和紙の価額を上回る。ここでは美濃紙及び半紙以外を他の他に分類した。何れの価額も和紙全体の価額に比べ、大まかには同程度の推移を示す。美濃紙よりも半紙及びその他の割合が高く、当初半紙とその他の割合は同程度であったが、1904年以降その他の割合が高くなる。1905（明治38）年統計から、その他の薄葉及び雁皮紙が分離して集計されたことから、この紙の生産が増大したことが原因のひとつと考える。なお、1912（大正元）年統計では薄葉紙（コッピー紙）と名称が変更されている。

3.2.2 和紙の職工数
図2に1899（明治32）年から始まる和紙の職工数を示す。

3.2.3 和紙の分類ごとの価額と数量
美濃紙、半紙及びその他の価額を図3に示す。
美濃紙及び半紙の数量を図4に示す。なお、統計表の記載から、美濃紙は4800枚／続であり、半紙は2000枚／続である。

半紙の数量において、1894（明治27）年、1900（明治33）年、1904（明治37）年は前後の年に比べ急的な増大である。また、1917（大正6）年は前後の年に比べ大幅に増大している。1894（明治27）年は日清戦争開戦年であり、1900（明治33）年は義和団の乱が起こっている、1904（明治37）年は日露戦争開戦年である及び1917（大正6）年の3年前には第1次世界大戦が勃発している。しかし、1917（大正6）年を除いて価額には数量のような急激な変化は見られない。

図2から職工数は減少したが、美濃紙及び半紙の全国の数量は最終的に増加している。

3. 3 府県別の和紙の統計比較

和紙について、各府県別の価額、職工数、一人当たりの価額、美濃紙の数量・価額・単価、半紙の数量・価額・単価、その他の価額について各県の比較を行い、上位10位までに入った統計年間における各府県の比較を試みた。

職工数及び一人当たりの価額については、集計された1899（明治32）年から1923（大正12）年までを使用した。価額、職工数、一人当たりの価額、美濃紙の数量・価額・単価、半紙の数量・価額・単価、その他の価額については、全国の統計が比較的整った1887（明治20）年、1892（明治25）年、1894（明治27）年から1923（大正12）年までの32年分を使用した。また、1905（明治38）年以降の統計ではその他の他が細分化されるが、美濃紙及び半紙以外はその他の他に分類した。

表3から価額において回数が多かった県としては、岐阜、愛媛、高知、福岡、静岡、兵庫、山口が20回以上であり、福井が13回と続き、当時全国の中でも和紙の生産が盛んであったことを示している。一方、職工数の一人当たりの価額、美濃紙の数量・価額・単価、半紙の数量・価額・単価、その他の価額については、全国の統計が比較的整った1887（明治20）年、1892（明治25）年、1894（明治27）年から1923（大正12）年までの32年分を使用した。また、1905（明治38）年以降の統計ではなく他の他が細分化されるが、美濃紙及び半紙以外はその他の他に分類した。

表3から、傾向として半紙よりも美濃紙の生産が盛んであった産地は、山梨、岐阜、長野、鳥取であり、美濃紙よりも半紙の生産が盛んな産地として、兵庫、島根、岡山、山口を上げる。両者とも盛んな産地は、静岡、愛媛、高知である。

表4-1から半紙の価額を統計年毎にまとめた。高知は1874（明治7）年統計では山口に続き2位であったが、その後の統計では常に首位を保っている。このことは、高知が和紙の拡大を進めるようになったと推定される。

3.4 産地別の和紙の生産性

和紙の生産性については、半紙の生産性を比較するたびに、半紙の生産性が高くなる傾向がある。この傾向は、半紙の生産性が高くなる傾向があるという。

表4から価額において回数が多かった県としては、岐阜、愛媛、高知、福岡、静岡、兵庫、山口が20回以上であり、福井が13回と続き、当時全国の中でも和紙の生産が盛んであったことを示している。一方、職工数の一人当たりの価額、美濃紙の数量・価額・単価、半紙の数量・価額・単価、その他の価額については、全国の統計が比較的整った1887（明治20）年、1892（明治25）年、1894（明治27）年から1923（大正12）年までの32年分を使用した。また、1905（明治38）年以降の統計ではその他の他が細分化されるが、美濃紙及び半紙以外はその他の他に分類した。
表1 統計値の取扱

<table>
<thead>
<tr>
<th>統計年</th>
<th>取 扱</th>
</tr>
</thead>
<tbody>
<tr>
<td>1887(明治20)年</td>
<td>洋製紙の数量において記載値と各数量を総和して得た値が一致しないので、埼玉の数量752,760を725,760と訂正した。全体の数量において記載値と各数量を総和値が一致しないので、廣島の数量136,712を136,722と修正した。</td>
</tr>
<tr>
<td>1894(明治27)年から1897(明治30)年</td>
<td>西洋紙の価額において1894(明治27)年及び1895(明治28)年は記載されていない。また、1896(明治29)年及び1897(明治30)年の価額は1898(明治31)年以降に記載される過去の価額の記載と異なる。1898(明治31)年以降に記載されている価額は一致するので、1898(明治31)年に記載の過去の価額を1894(明治27)年から1897(明治30)年の価額とした。</td>
</tr>
<tr>
<td>1895(明治28)年</td>
<td>文字が薄くて見えにくい。記載の値と各項目の値を総和して得た値を比較して、各項目の値を推察した。しかし、推察後の値として、美濃紙では、数量の総和において計算値は記載の値よりも-11少なく、価額の総和において計算値は記載の値よりも15多かった。また、半紙では、数量の総和において計算値は記載の値よりも2多く、其他ノ紙では、価額の総和において計算値は記載の値よりも1少なかった。</td>
</tr>
<tr>
<td>1896(明治29)年</td>
<td>半紙の数量において記載の値よりも各項目の値を総和して得た値は20,000貫多い。しかし、どの項目が間違っているか確認できないため、集計値をそのまま利用した。府県別には相対比較するだけなので、府県別の値はそのままにした。</td>
</tr>
<tr>
<td>1899(明治32)年</td>
<td>不鮮明な部分を記載の値と各項目の値の総和が一致するように推測した。</td>
</tr>
<tr>
<td>1900(明治33)年</td>
<td>半紙の数量の総和の値は6,588,217となり記載値と一致するが突出した値であり、後に3,291,167と訂正されているので従った。府県別には相対比較するだけなので、府県別の値はそのままにした。</td>
</tr>
<tr>
<td>1903(明治36)年</td>
<td>埼玉県の美濃紙の価額が8,863であるが、縦横の合計価額が記載値よりも2,000多くなるので、6,863に修正した。</td>
</tr>
<tr>
<td>1904(明治37)年</td>
<td>美濃紙及び半紙の合計の数量が夫々456,843総及び390,284総と書かれ、計算した合計の値と一致する。しかし、第23次以降は456,843、3,890、741に訂正されているので従った。府県別には相対比較するだけなので、府県別の値はそのままにした。</td>
</tr>
<tr>
<td>1906(明治39)年</td>
<td>表以外に、薄葉及び雁皮紙で、兵庫県51,150枚、価額1,375円、高知県7,300枚、価額12,775円あると記載されている。価額のみ各県及び合計に加えた。西洋紙の産出価額は14,157,786円と記載されているが、その後の年度で13,645,380円と記載されているので、その後の年度の産出価額を使用した。</td>
</tr>
<tr>
<td>1918(大正7)年</td>
<td>和歌山の価額を合計すると、記載の値に比べ1多かった。価本の価額を合計すると、記載の値に比べ1少なかった。各合計価額は一致するので、夫々の価額の合計値は計算した値を使用した。</td>
</tr>
<tr>
<td>1919(大正8)年</td>
<td>福岡の半紙の価額は64,427円と記載されているが、64,247円なら縦横の価額が揃うので64,247円に訂正した。</td>
</tr>
<tr>
<td>1921(大正10)年</td>
<td>三重の典具紙の価額は12,600円と記載されているが、13,600円なら縦横の価額が揃うので訂正した。</td>
</tr>
<tr>
<td>1922(大正11)年</td>
<td>集計表の縦横の合計価額から、三重の他紙の価額に530円加えて、合計した値と記入されている合計値に合わせた。</td>
</tr>
</tbody>
</table>

—69—
<table>
<thead>
<tr>
<th>統計年</th>
<th>記載された分類</th>
</tr>
</thead>
<tbody>
<tr>
<td>1874（明治7）年</td>
<td>紙類</td>
</tr>
<tr>
<td>1884（明治17）年</td>
<td>西洋紙、楮紙、雁皮、三樫、薬紙、雑</td>
</tr>
<tr>
<td>1885（明治18）年</td>
<td>西洋紙、日本紙（楮紙、雁皮、三樫、薬紙、雑）</td>
</tr>
<tr>
<td>1887（明治20）年</td>
<td>半紙、美濃紙、其の他 洋製紙</td>
</tr>
<tr>
<td>1888（明治21）年</td>
<td>洋紙</td>
</tr>
<tr>
<td>1890（明治23）年</td>
<td>西洋紙</td>
</tr>
<tr>
<td>1891（明治24）年</td>
<td>西洋紙</td>
</tr>
<tr>
<td>1892（明治25）年</td>
<td>和紙（美濃紙、半紙 雑紙類）、西洋紙</td>
</tr>
<tr>
<td>府県</td>
<td>数量</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>東京</td>
<td>8</td>
</tr>
<tr>
<td>京都</td>
<td>2</td>
</tr>
<tr>
<td>大阪</td>
<td>1</td>
</tr>
<tr>
<td>神奈川</td>
<td>9</td>
</tr>
<tr>
<td>兵庫</td>
<td>29</td>
</tr>
<tr>
<td>長崎</td>
<td>1</td>
</tr>
<tr>
<td>新潟</td>
<td>1</td>
</tr>
<tr>
<td>埼玉</td>
<td>5</td>
</tr>
<tr>
<td>群馬</td>
<td>6</td>
</tr>
<tr>
<td>千葉</td>
<td>12</td>
</tr>
<tr>
<td>茨城</td>
<td>5</td>
</tr>
<tr>
<td>桐生</td>
<td>8</td>
</tr>
<tr>
<td>奈良</td>
<td>4</td>
</tr>
<tr>
<td>三重</td>
<td>2</td>
</tr>
<tr>
<td>愛知</td>
<td>3</td>
</tr>
<tr>
<td>沖縄</td>
<td>30</td>
</tr>
<tr>
<td>山形</td>
<td>3</td>
</tr>
<tr>
<td>佐賀</td>
<td>4</td>
</tr>
<tr>
<td>滋賀</td>
<td>5</td>
</tr>
<tr>
<td>岐阜</td>
<td>32</td>
</tr>
<tr>
<td>長野</td>
<td>25</td>
</tr>
<tr>
<td>福島</td>
<td>1</td>
</tr>
<tr>
<td>岩手</td>
<td>1</td>
</tr>
<tr>
<td>青森</td>
<td>20</td>
</tr>
<tr>
<td>神奈川</td>
<td>3</td>
</tr>
<tr>
<td>秋田</td>
<td>1</td>
</tr>
<tr>
<td>北海道</td>
<td>1</td>
</tr>
<tr>
<td>福井</td>
<td>13</td>
</tr>
<tr>
<td>石川</td>
<td>1</td>
</tr>
<tr>
<td>富山</td>
<td>25</td>
</tr>
<tr>
<td>鳥取</td>
<td>32</td>
</tr>
<tr>
<td>島根</td>
<td>5</td>
</tr>
<tr>
<td>岡山</td>
<td>7</td>
</tr>
<tr>
<td>三重</td>
<td>6</td>
</tr>
<tr>
<td>山口</td>
<td>25</td>
</tr>
<tr>
<td>和歌山</td>
<td>1</td>
</tr>
<tr>
<td>徳島</td>
<td>1</td>
</tr>
<tr>
<td>香川</td>
<td>11</td>
</tr>
<tr>
<td>愛媛</td>
<td>32</td>
</tr>
<tr>
<td>高知</td>
<td>32</td>
</tr>
<tr>
<td>福岡</td>
<td>31</td>
</tr>
<tr>
<td>佐賀</td>
<td>8</td>
</tr>
<tr>
<td>熊本</td>
<td>2</td>
</tr>
<tr>
<td>宮崎</td>
<td>1</td>
</tr>
<tr>
<td>鹿児島</td>
<td>1</td>
</tr>
<tr>
<td>沖縄</td>
<td>1</td>
</tr>
<tr>
<td>北海道</td>
<td>24</td>
</tr>
</tbody>
</table>

表3 和紙の各項目を府県ごとに比較して10位以内に入った回数
表4-1 各年における府県別の和紙の価額

<table>
<thead>
<tr>
<th>年代</th>
<th>県</th>
<th>価額 円</th>
</tr>
</thead>
<tbody>
<tr>
<td>1874(明治7)年</td>
<td>山口</td>
<td>1,385,890</td>
</tr>
<tr>
<td></td>
<td>高知</td>
<td>456,830</td>
</tr>
<tr>
<td></td>
<td>磐前（福島）</td>
<td>300,559</td>
</tr>
<tr>
<td></td>
<td>愛媛</td>
<td>269,642</td>
</tr>
<tr>
<td></td>
<td>浜田（島根）</td>
<td>235,910</td>
</tr>
</tbody>
</table>

※上位5県を降順に記載
<table>
<thead>
<tr>
<th>府県</th>
<th>価額</th>
<th>府県</th>
<th>価額</th>
<th>府県</th>
<th>価額</th>
<th>府県</th>
<th>価額</th>
<th>府県</th>
<th>価額</th>
</tr>
</thead>
<tbody>
<tr>
<td>高知</td>
<td>479,528</td>
<td>高知</td>
<td>648,512</td>
<td>高知</td>
<td>1,011,931</td>
<td>高知</td>
<td>1,052,286</td>
<td>高知</td>
<td>1,560,993</td>
</tr>
<tr>
<td>山口</td>
<td>402,878</td>
<td>福岡</td>
<td>309,549</td>
<td>愛媛</td>
<td>515,050</td>
<td>静岡</td>
<td>444,679</td>
<td>愛媛</td>
<td>1,189,892</td>
</tr>
<tr>
<td>愛媛</td>
<td>280,506</td>
<td>静岡</td>
<td>304,710</td>
<td>鹿児島</td>
<td>436,500</td>
<td>鹿児島</td>
<td>453,542</td>
<td>岐阜</td>
<td>1,103,762</td>
</tr>
<tr>
<td>福岡</td>
<td>275,736</td>
<td>岐阜</td>
<td>293,567</td>
<td>高知</td>
<td>328,831</td>
<td>廣島</td>
<td>785,965</td>
<td>静岡</td>
<td>809,542</td>
</tr>
<tr>
<td>岐阜</td>
<td>160,917</td>
<td>長野</td>
<td>230,113</td>
<td>長野</td>
<td>218,954</td>
<td>岐阜</td>
<td>769,707</td>
<td>福岡</td>
<td>390,208</td>
</tr>
<tr>
<td>福岡</td>
<td>101,375</td>
<td>埼玉</td>
<td>191,796</td>
<td>山口</td>
<td>194,385</td>
<td>愛媛</td>
<td>693,733</td>
<td>長野</td>
<td>379,471</td>
</tr>
<tr>
<td>兵庫</td>
<td>100,144</td>
<td>兵庫</td>
<td>181,791</td>
<td>福岡</td>
<td>275,736</td>
<td>静岡</td>
<td>436,500</td>
<td>鹿児島</td>
<td>843,542</td>
</tr>
<tr>
<td>廣島</td>
<td>67,161</td>
<td>山口</td>
<td>178,861</td>
<td>東京</td>
<td>177,393</td>
<td>東京</td>
<td>235,583</td>
<td>山口</td>
<td>303,116</td>
</tr>
<tr>
<td>静岡</td>
<td>48,731</td>
<td>福井</td>
<td>98,395</td>
<td>長野</td>
<td>379,471</td>
<td>静岡</td>
<td>809,542</td>
<td>静岡</td>
<td>343,873</td>
</tr>
<tr>
<td>東京</td>
<td>28,981</td>
<td>徳島</td>
<td>115,910</td>
<td>福井</td>
<td>95,491</td>
<td>福井</td>
<td>436,500</td>
<td>静岡</td>
<td>343,873</td>
</tr>
<tr>
<td>岡山</td>
<td>37,825</td>
<td>岡山</td>
<td>147,555</td>
<td>長野</td>
<td>71,260</td>
<td>岡山</td>
<td>97,260</td>
<td>高知</td>
<td>133,495</td>
</tr>
<tr>
<td>新潟</td>
<td>36,630</td>
<td>三重</td>
<td>144,932</td>
<td>熊本</td>
<td>95,491</td>
<td>熊本</td>
<td>134,874</td>
<td>高知</td>
<td>133,495</td>
</tr>
<tr>
<td>山形</td>
<td>32,708</td>
<td>静岡</td>
<td>139,128</td>
<td>福井</td>
<td>95,491</td>
<td>熊本</td>
<td>134,874</td>
<td>高知</td>
<td>133,495</td>
</tr>
<tr>
<td>宮城</td>
<td>28,981</td>
<td>廣島</td>
<td>115,910</td>
<td>廣島</td>
<td>86,857</td>
<td>廣島</td>
<td>124,667</td>
<td>高知</td>
<td>133,495</td>
</tr>
<tr>
<td>岐阜</td>
<td>21,584</td>
<td>佐賀</td>
<td>111,866</td>
<td>宮城</td>
<td>81,339</td>
<td>香川</td>
<td>108,980</td>
<td>岐阜</td>
<td>133,495</td>
</tr>
<tr>
<td>長崎</td>
<td>15,224</td>
<td>大分</td>
<td>108,674</td>
<td>佐賀</td>
<td>81,162</td>
<td>佐賀</td>
<td>101,920</td>
<td>長崎</td>
<td>133,495</td>
</tr>
<tr>
<td>北海道</td>
<td>216</td>
<td>福井</td>
<td>96,538</td>
<td>岡山</td>
<td>74,827</td>
<td>岡山</td>
<td>97,260</td>
<td>高知</td>
<td>133,495</td>
</tr>
</tbody>
</table>

注：表4-2 各年における府県別の和紙の価額
<table>
<thead>
<tr>
<th>府県</th>
<th>価額 円</th>
</tr>
</thead>
<tbody>
<tr>
<td>高知</td>
<td>1,505,322</td>
<td>高知</td>
<td>2,094,454</td>
<td>高知</td>
<td>2,631,601</td>
<td>高知</td>
<td>2,213,320</td>
<td>高知</td>
<td>2,922,119</td>
</tr>
<tr>
<td>愛媛</td>
<td>1,298,224</td>
<td>岐阜</td>
<td>1,871,709</td>
<td>岐阜</td>
<td>997,969</td>
<td>愛媛</td>
<td>1,161,555</td>
<td>愛媛</td>
<td>1,329,924</td>
</tr>
<tr>
<td>岐阜</td>
<td>1,261,889</td>
<td>静岡</td>
<td>993,578</td>
<td>静岡</td>
<td>962,684</td>
<td>岐阜</td>
<td>1,081,627</td>
<td>岐阜</td>
<td>1,103,455</td>
</tr>
<tr>
<td>静岡</td>
<td>842,089</td>
<td>高岡</td>
<td>870,941</td>
<td>高岡</td>
<td>837,154</td>
<td>静岡</td>
<td>711,617</td>
<td>静岡</td>
<td>573,952</td>
</tr>
<tr>
<td>福岡</td>
<td>492,735</td>
<td>兵庫</td>
<td>685,342</td>
<td>長野</td>
<td>519,321</td>
<td>福岡</td>
<td>662,742</td>
<td>福岡</td>
<td>678,796</td>
</tr>
<tr>
<td>兵庫</td>
<td>304,274</td>
<td>静岡</td>
<td>842,089</td>
<td>静岡</td>
<td>870,941</td>
<td>兵庫</td>
<td>351,401</td>
<td>兵庫</td>
<td>304,274</td>
</tr>
<tr>
<td>岐阜</td>
<td>1,261,889</td>
<td>静岡</td>
<td>993,578</td>
<td>岐阜</td>
<td>997,969</td>
<td>岐阜</td>
<td>1,081,627</td>
<td>岐阜</td>
<td>1,103,455</td>
</tr>
<tr>
<td>福岡</td>
<td>492,735</td>
<td>兵庫</td>
<td>685,342</td>
<td>長野</td>
<td>519,321</td>
<td>福岡</td>
<td>662,742</td>
<td>福岡</td>
<td>678,796</td>
</tr>
</tbody>
</table>

表4-3 各年における府県別の和紙の価額
<table>
<thead>
<tr>
<th>府県</th>
<th>価額 円</th>
</tr>
</thead>
<tbody>
<tr>
<td>高知</td>
<td>2,299,890</td>
<td>高知</td>
<td>2,670,916</td>
<td>高知</td>
<td>2,361,750</td>
<td>高知</td>
<td>2,809,615</td>
<td>高知</td>
<td>2,337,988</td>
</tr>
<tr>
<td>岐阜</td>
<td>1,179,045</td>
<td>岐阜</td>
<td>1,049,590</td>
<td>岐阜</td>
<td>1,073,653</td>
<td>愛媛</td>
<td>1,128,714</td>
<td>愛媛</td>
<td>1,276,092</td>
</tr>
<tr>
<td>愛媛</td>
<td>1,041,840</td>
<td>愛媛</td>
<td>980,732</td>
<td>福岡</td>
<td>1,054,824</td>
<td>福岡</td>
<td>1,253,620</td>
<td></td>
<td></td>
</tr>
<tr>
<td>東京</td>
<td>831,087</td>
<td>静岡</td>
<td>871,463</td>
<td>東京</td>
<td>835,654</td>
<td>山口</td>
<td>517,490</td>
<td>山口</td>
<td>494,198</td>
</tr>
<tr>
<td>静岡</td>
<td>618,719</td>
<td>岐阜</td>
<td>700,875</td>
<td>静岡</td>
<td>855,218</td>
<td>東京</td>
<td>795,630</td>
<td>静岡</td>
<td>671,691</td>
</tr>
<tr>
<td>山口</td>
<td>580,332</td>
<td>福井</td>
<td>1,036,331</td>
<td>静岡</td>
<td>691,672</td>
<td>岐阜</td>
<td>500,749</td>
<td>福島</td>
<td>574,770</td>
</tr>
<tr>
<td>兵庫</td>
<td>533,270</td>
<td>福井</td>
<td>411,644</td>
<td>東京</td>
<td>714,059</td>
<td>福島</td>
<td>460,875</td>
<td>香川</td>
<td>458,581</td>
</tr>
<tr>
<td>福井</td>
<td>523,820</td>
<td>福井</td>
<td>359,243</td>
<td>福岡</td>
<td>422,807</td>
<td>福井</td>
<td>300,749</td>
<td>鹿児島</td>
<td>358,340</td>
</tr>
<tr>
<td>北海道</td>
<td>18,083</td>
<td>青森</td>
<td>30,061</td>
<td>青森</td>
<td>35,392</td>
<td>北海道</td>
<td>27,481</td>
<td>冲縄</td>
<td>3,218</td>
</tr>
<tr>
<td>京都</td>
<td>77,510</td>
<td>福島</td>
<td>44,251</td>
<td>福島</td>
<td>40,296</td>
<td>京都</td>
<td>336,151</td>
<td>冲縄</td>
<td>3,362</td>
</tr>
<tr>
<td>北海道</td>
<td>15,277</td>
<td>茨城</td>
<td>33,302</td>
<td>北海道</td>
<td>32,260</td>
<td>北海道</td>
<td>15,812</td>
<td>冲縄</td>
<td>3,218</td>
</tr>
<tr>
<td>北海道</td>
<td>11,852</td>
<td>三重</td>
<td>34,112</td>
<td>北海道</td>
<td>27,456</td>
<td>北海道</td>
<td>15,664</td>
<td>冲縄</td>
<td>3,218</td>
</tr>
<tr>
<td>府県</td>
<td>価額 円</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td>高知</td>
<td>2,705,842</td>
<td>高知</td>
<td>3,439,337</td>
<td>高知</td>
<td>3,538,985</td>
<td>高知</td>
<td>3,534,008</td>
<td>高知</td>
<td>4,417,187</td>
</tr>
<tr>
<td>愛媛</td>
<td>1,443,128</td>
<td>愛媛</td>
<td>2,852,176</td>
<td>愛媛</td>
<td>2,087,351</td>
<td>愛媛</td>
<td>1,978,125</td>
<td>愛媛</td>
<td>2,391,448</td>
</tr>
<tr>
<td>岐阜</td>
<td>1,128,353</td>
<td>岐阜</td>
<td>1,437,536</td>
<td>岐阜</td>
<td>1,671,178</td>
<td>岐阜</td>
<td>1,534,365</td>
<td>岐阜</td>
<td>1,471,420</td>
</tr>
<tr>
<td>福岡</td>
<td>1,061,670</td>
<td>福岡</td>
<td>1,362,506</td>
<td>福岡</td>
<td>1,650,687</td>
<td>福岡</td>
<td>872,202</td>
<td>福岡</td>
<td>1,043,240</td>
</tr>
<tr>
<td>静岡</td>
<td>763,985</td>
<td>兵庫</td>
<td>1,009,677</td>
<td>東京</td>
<td>942,012</td>
<td>静岡</td>
<td>858,430</td>
<td>東京</td>
<td>754,078</td>
</tr>
<tr>
<td>兵庫</td>
<td>724,689</td>
<td>兵庫</td>
<td>935,304</td>
<td>東京</td>
<td>812,800</td>
<td>兵庫</td>
<td>530,402</td>
<td>兵庫</td>
<td>479,424</td>
</tr>
<tr>
<td>山口</td>
<td>547,725</td>
<td>東京</td>
<td>729,386</td>
<td>静岡</td>
<td>499,663</td>
<td>山口</td>
<td>396,759</td>
<td>山口</td>
<td>463,170</td>
</tr>
<tr>
<td>埼玉</td>
<td>533,100</td>
<td>佐賀</td>
<td>1,009,677</td>
<td>東京</td>
<td>942,012</td>
<td>静岡</td>
<td>858,430</td>
<td>東京</td>
<td>754,078</td>
</tr>
<tr>
<td>鳥取</td>
<td>533,100</td>
<td>鳥取</td>
<td>1,009,677</td>
<td>東京</td>
<td>942,012</td>
<td>静岡</td>
<td>858,430</td>
<td>東京</td>
<td>754,078</td>
</tr>
<tr>
<td>岡山</td>
<td>509,591</td>
<td>岡山</td>
<td>729,386</td>
<td>静岡</td>
<td>499,663</td>
<td>山口</td>
<td>396,759</td>
<td>山口</td>
<td>463,170</td>
</tr>
<tr>
<td>福井</td>
<td>509,591</td>
<td>福井</td>
<td>729,386</td>
<td>静岡</td>
<td>499,663</td>
<td>山口</td>
<td>396,759</td>
<td>山口</td>
<td>463,170</td>
</tr>
<tr>
<td>福井</td>
<td>485,195</td>
<td>廣島</td>
<td>312,117</td>
<td>山口</td>
<td>499,663</td>
<td>山口</td>
<td>396,759</td>
<td>山口</td>
<td>463,170</td>
</tr>
<tr>
<td>岡山</td>
<td>509,591</td>
<td>靜岡</td>
<td>729,386</td>
<td>静岡</td>
<td>499,663</td>
<td>山口</td>
<td>396,759</td>
<td>山口</td>
<td>463,170</td>
</tr>
<tr>
<td>福井</td>
<td>485,195</td>
<td>廣島</td>
<td>312,117</td>
<td>山口</td>
<td>499,663</td>
<td>山口</td>
<td>396,759</td>
<td>山口</td>
<td>463,170</td>
</tr>
</tbody>
</table>
表4-6 各年における府県別の和紙の価額

<table>
<thead>
<tr>
<th>年次</th>
<th>1911(明治44年)</th>
<th>1912(大正元)年</th>
<th>1913(大正2年)</th>
<th>1914(大正3年)</th>
<th>1915(大正4年)</th>
</tr>
</thead>
<tbody>
<tr>
<td>府県</td>
<td>価額 円</td>
<td>府県 価額 円</td>
<td>府県 価額 円</td>
<td>府県 価額 円</td>
<td>府県 価額 円</td>
</tr>
<tr>
<td>愛媛</td>
<td>2,465,727</td>
<td>愛媛 2,000,363</td>
<td>愛媛 2,123,658</td>
<td>愛媛 1,787,770</td>
<td>愛媛 2,033,538</td>
</tr>
<tr>
<td>岐阜</td>
<td>1,501,932</td>
<td>岐阜 1,291,111</td>
<td>岐阜 1,415,801</td>
<td>岐阜 1,152,786</td>
<td>岐阜 1,431,566</td>
</tr>
<tr>
<td>福岡</td>
<td>1,142,047</td>
<td>福岡 1,146,376</td>
<td>福岡 1,215,261</td>
<td>福岡 1,137,801</td>
<td>福岡 1,431,566</td>
</tr>
<tr>
<td>東京</td>
<td>973,959</td>
<td>兵庫 991,247</td>
<td>静岡 967,797</td>
<td>福岡 1,240,166</td>
<td>岡山 507,393</td>
</tr>
<tr>
<td>静岡</td>
<td>897,599</td>
<td>東京 944,510</td>
<td>福井 836,986</td>
<td>福井 1,240,166</td>
<td>静岡 855,323</td>
</tr>
<tr>
<td>兵庫</td>
<td>855,323</td>
<td>三重 859,580</td>
<td>静岡 857,835</td>
<td>静岡 874,006</td>
<td>三重 474,865</td>
</tr>
<tr>
<td>廣島</td>
<td>769,749</td>
<td>三重 769,749</td>
<td>静岡 710,820</td>
<td>長野 340,848</td>
<td>長野 327,976</td>
</tr>
<tr>
<td>愛媛</td>
<td>547,456</td>
<td>岡山 526,976</td>
<td>東京 808,923</td>
<td>長野 327,976</td>
<td>東京 294,942</td>
</tr>
<tr>
<td>岡山</td>
<td>474,328</td>
<td>福井 507,393</td>
<td>静岡 855,323</td>
<td>錦秋 442,973</td>
<td>高知 226,973</td>
</tr>
<tr>
<td>岡山</td>
<td>234,350</td>
<td>岡山 275,211</td>
<td>岡山 526,976</td>
<td>高知 226,973</td>
<td>高知 226,973</td>
</tr>
<tr>
<td>福井</td>
<td>230,816</td>
<td>福井 250,229</td>
<td>高知 226,973</td>
<td>高知 226,973</td>
<td>高知 226,973</td>
</tr>
<tr>
<td>兵庫</td>
<td>202,111</td>
<td>兵庫 250,330</td>
<td>鹿児島 230,229</td>
<td>鹿児島 230,229</td>
<td>鹿児島 230,229</td>
</tr>
<tr>
<td>鹿児島</td>
<td>230,229</td>
<td>鹿児島 230,229</td>
<td>鹿児島 230,229</td>
<td>鹿児島 230,229</td>
<td>鹿児島 230,229</td>
</tr>
<tr>
<td>和歌山</td>
<td>155,399</td>
<td>和歌山 150,015</td>
<td>和歌山 150,015</td>
<td>和歌山 150,015</td>
<td>和歌山 150,015</td>
</tr>
<tr>
<td>新潟</td>
<td>156,489</td>
<td>新潟 171,204</td>
<td>新潟 171,204</td>
<td>新潟 171,204</td>
<td>新潟 171,204</td>
</tr>
<tr>
<td>長崎</td>
<td>155,359</td>
<td>徳島 135,431</td>
<td>徳島 135,431</td>
<td>徳島 135,431</td>
<td>徳島 135,431</td>
</tr>
<tr>
<td>徳島</td>
<td>138,256</td>
<td>新潟 128,578</td>
<td>新潟 128,578</td>
<td>新潟 128,578</td>
<td>新潟 128,578</td>
</tr>
<tr>
<td>石川</td>
<td>100,975</td>
<td>京都 102,340</td>
<td>京都 102,340</td>
<td>京都 102,340</td>
<td>京都 102,340</td>
</tr>
<tr>
<td>長崎</td>
<td>97,020</td>
<td>宮城 99,955</td>
<td>宮城 99,955</td>
<td>宮城 99,955</td>
<td>宮城 99,955</td>
</tr>
<tr>
<td>宮城</td>
<td>90,062</td>
<td>石川 98,919</td>
<td>石川 98,919</td>
<td>石川 98,919</td>
<td>石川 98,919</td>
</tr>
<tr>
<td>山形</td>
<td>80,987</td>
<td>長崎 86,730</td>
<td>長崎 86,730</td>
<td>長崎 86,730</td>
<td>長崎 86,730</td>
</tr>
<tr>
<td>山形</td>
<td>77,430</td>
<td>山形 73,732</td>
<td>山形 73,732</td>
<td>山形 73,732</td>
<td>山形 73,732</td>
</tr>
<tr>
<td>愛知</td>
<td>72,720</td>
<td>大阪 72,054</td>
<td>大阪 72,054</td>
<td>大阪 72,054</td>
<td>大阪 72,054</td>
</tr>
<tr>
<td>大阪</td>
<td>51,224</td>
<td>滋賀 68,749</td>
<td>滋賀 68,749</td>
<td>滋賀 68,749</td>
<td>滋賀 68,749</td>
</tr>
<tr>
<td>滋賀</td>
<td>46,021</td>
<td>愛知 65,137</td>
<td>愛知 65,137</td>
<td>愛知 65,137</td>
<td>愛知 65,137</td>
</tr>
<tr>
<td>岩手</td>
<td>44,165</td>
<td>岩手 53,034</td>
<td>岩手 53,034</td>
<td>岩手 53,034</td>
<td>岩手 53,034</td>
</tr>
<tr>
<td>千葉</td>
<td>42,548</td>
<td>神奈川 39,413</td>
<td>千葉 46,980</td>
<td>千葉 46,980</td>
<td>千葉 46,980</td>
</tr>
<tr>
<td>神奈川</td>
<td>40,163</td>
<td>千葉 35,636</td>
<td>神奈川 31,950</td>
<td>神奈川 31,950</td>
<td>神奈川 31,950</td>
</tr>
<tr>
<td>北海道</td>
<td>22,542</td>
<td>北海道 26,832</td>
<td>北海道 26,832</td>
<td>北海道 26,832</td>
<td>北海道 26,832</td>
</tr>
<tr>
<td>秋田</td>
<td>15,887</td>
<td>群馬 16,994</td>
<td>群馬 16,994</td>
<td>群馬 16,994</td>
<td>群馬 16,994</td>
</tr>
<tr>
<td>青森</td>
<td>13,983</td>
<td>青森 16,396</td>
<td>青森 16,396</td>
<td>青森 16,396</td>
<td>青森 16,396</td>
</tr>
<tr>
<td>群馬</td>
<td>12,926</td>
<td>秋田 14,912</td>
<td>秋田 14,912</td>
<td>秋田 14,912</td>
<td>秋田 14,912</td>
</tr>
<tr>
<td>沖縄</td>
<td>1,828</td>
<td>沖縄 5,256</td>
<td>沖縄 5,256</td>
<td>沖縄 5,256</td>
<td>沖縄 5,256</td>
</tr>
<tr>
<td>府県</td>
<td>価額 円</td>
<td>府県</td>
<td>価額 円</td>
<td>府県</td>
<td>価額 円</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>--------</td>
</tr>
<tr>
<td>高知</td>
<td>4,092,188</td>
<td>高知</td>
<td>7,133,701</td>
<td>高知</td>
<td>10,274,145</td>
</tr>
<tr>
<td>愛媛</td>
<td>2,529,160</td>
<td>愛媛</td>
<td>3,644,605</td>
<td>愛媛</td>
<td>6,091,882</td>
</tr>
<tr>
<td>岐阜</td>
<td>1,614,186</td>
<td>東京</td>
<td>2,624,646</td>
<td>兵庫</td>
<td>3,822,620</td>
</tr>
<tr>
<td>静岡</td>
<td>1,190,234</td>
<td>岐阜</td>
<td>1,703,434</td>
<td>兵庫</td>
<td>2,865,983</td>
</tr>
<tr>
<td>兵庫</td>
<td>1,090,872</td>
<td>岐阜</td>
<td>1,874,558</td>
<td>静岡</td>
<td>2,034,627</td>
</tr>
<tr>
<td>東京</td>
<td>1,085,329</td>
<td>廣島</td>
<td>1,489,637</td>
<td>廣島</td>
<td>2,033,424</td>
</tr>
<tr>
<td>廣島</td>
<td>983,542</td>
<td>香川</td>
<td>1,364,406</td>
<td>佐賀</td>
<td>1,798,025</td>
</tr>
<tr>
<td>山口</td>
<td>913,515</td>
<td>香川</td>
<td>1,159,397</td>
<td>佐賀</td>
<td>1,305,090</td>
</tr>
<tr>
<td>福井</td>
<td>850,164</td>
<td>岡山</td>
<td>1,238,588</td>
<td>香川</td>
<td>1,550,393</td>
</tr>
<tr>
<td>福井</td>
<td>741,655</td>
<td>岡山</td>
<td>1,091,111</td>
<td>福井</td>
<td>1,550,393</td>
</tr>
<tr>
<td>高知</td>
<td>4,092,188</td>
<td>高知</td>
<td>7,133,701</td>
<td>高知</td>
<td>10,274,145</td>
</tr>
<tr>
<td>愛媛</td>
<td>2,529,160</td>
<td>愛媛</td>
<td>3,644,605</td>
<td>愛媛</td>
<td>6,091,882</td>
</tr>
<tr>
<td>岐阜</td>
<td>1,614,186</td>
<td>東京</td>
<td>2,624,646</td>
<td>兵庫</td>
<td>3,822,620</td>
</tr>
<tr>
<td>静岡</td>
<td>1,190,234</td>
<td>岐阜</td>
<td>1,703,434</td>
<td>兵庫</td>
<td>2,865,983</td>
</tr>
<tr>
<td>兵庫</td>
<td>1,090,872</td>
<td>岐阜</td>
<td>1,874,558</td>
<td>静岡</td>
<td>2,034,627</td>
</tr>
<tr>
<td>東京</td>
<td>1,085,329</td>
<td>廣島</td>
<td>1,489,637</td>
<td>廣島</td>
<td>2,033,424</td>
</tr>
<tr>
<td>廣島</td>
<td>983,542</td>
<td>香川</td>
<td>1,364,406</td>
<td>佐賀</td>
<td>1,798,025</td>
</tr>
<tr>
<td>山口</td>
<td>913,515</td>
<td>香川</td>
<td>1,159,397</td>
<td>佐賀</td>
<td>1,305,090</td>
</tr>
<tr>
<td>福井</td>
<td>850,164</td>
<td>岡山</td>
<td>1,238,588</td>
<td>香川</td>
<td>1,550,393</td>
</tr>
<tr>
<td>福井</td>
<td>741,655</td>
<td>岡山</td>
<td>1,091,111</td>
<td>福井</td>
<td>1,550,393</td>
</tr>
<tr>
<td>高知</td>
<td>4,092,188</td>
<td>高知</td>
<td>7,133,701</td>
<td>高知</td>
<td>10,274,145</td>
</tr>
<tr>
<td>愛媛</td>
<td>2,529,160</td>
<td>愛媛</td>
<td>3,644,605</td>
<td>愛媛</td>
<td>6,091,882</td>
</tr>
<tr>
<td>府県</td>
<td>価額 円</td>
<td>府県</td>
<td>価額 円</td>
<td>府県</td>
<td>価額 円</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>高知</td>
<td>11,934,316</td>
<td>高知</td>
<td>9,232,883</td>
<td>高知</td>
<td>8,414,681</td>
</tr>
<tr>
<td>愛媛</td>
<td>5,311,360</td>
<td>愛媛</td>
<td>4,732,213</td>
<td>愛媛</td>
<td>4,840,012</td>
</tr>
<tr>
<td>兵庫</td>
<td>4,371,020</td>
<td>岐阜</td>
<td>3,469,969</td>
<td>静岡</td>
<td>2,862,752</td>
</tr>
<tr>
<td>東京</td>
<td>3,836,638</td>
<td>東京</td>
<td>2,966,247</td>
<td>兵庫</td>
<td>2,529,685</td>
</tr>
<tr>
<td>静岡</td>
<td>3,733,581</td>
<td>兵庫</td>
<td>2,517,473</td>
<td>東京</td>
<td>2,502,893</td>
</tr>
<tr>
<td>山口</td>
<td>2,427,401</td>
<td>香川</td>
<td>1,894,881</td>
<td>福岡</td>
<td>1,906,618</td>
</tr>
<tr>
<td>香川</td>
<td>1,907,159</td>
<td>福岡</td>
<td>1,888,052</td>
<td>香川</td>
<td>1,864,200</td>
</tr>
<tr>
<td>廣島</td>
<td>1,391,505</td>
<td>埼玉</td>
<td>1,334,358</td>
<td>廣島</td>
<td>1,094,768</td>
</tr>
<tr>
<td>福井</td>
<td>1,258,043</td>
<td>茨城</td>
<td>1,264,252</td>
<td>岡山</td>
<td>1,049,914</td>
</tr>
<tr>
<td>茨城</td>
<td>1,206,043</td>
<td>鳥取</td>
<td>1,231,504</td>
<td>鳥取</td>
<td>1,098,194</td>
</tr>
<tr>
<td>岡山</td>
<td>1,179,655</td>
<td>岡山</td>
<td>1,066,845</td>
<td>岡山</td>
<td>1,049,914</td>
</tr>
<tr>
<td>島根</td>
<td>1,174,959</td>
<td>島根</td>
<td>1,020,272</td>
<td>島根</td>
<td>1,049,914</td>
</tr>
<tr>
<td>埼玉</td>
<td>1,114,370</td>
<td>山梨</td>
<td>987,844</td>
<td>山梨</td>
<td>983,969</td>
</tr>
<tr>
<td>山梨</td>
<td>1,102,891</td>
<td>福井</td>
<td>882,956</td>
<td>大阪</td>
<td>958,347</td>
</tr>
<tr>
<td>長野</td>
<td>1,065,044</td>
<td>大阪</td>
<td>879,362</td>
<td>長野</td>
<td>924,135</td>
</tr>
<tr>
<td>宮崎</td>
<td>828,949</td>
<td>三重</td>
<td>721,020</td>
<td>三重</td>
<td>763,944</td>
</tr>
<tr>
<td>東提</td>
<td>728,259</td>
<td>福井</td>
<td>696,557</td>
<td>福井</td>
<td>671,817</td>
</tr>
<tr>
<td>和歌山</td>
<td>683,370</td>
<td>和歌山</td>
<td>621,102</td>
<td>北海道</td>
<td>618,939</td>
</tr>
<tr>
<td>福島</td>
<td>618,601</td>
<td>福島</td>
<td>592,718</td>
<td>福島</td>
<td>579,073</td>
</tr>
<tr>
<td>櫻木</td>
<td>609,601</td>
<td>鹿児島</td>
<td>575,753</td>
<td>三重</td>
<td>566,056</td>
</tr>
<tr>
<td>鹿児島</td>
<td>595,953</td>
<td>富山</td>
<td>554,545</td>
<td>富山</td>
<td>558,562</td>
</tr>
<tr>
<td>三重</td>
<td>569,667</td>
<td>徳島</td>
<td>546,501</td>
<td>徳島</td>
<td>527,003</td>
</tr>
<tr>
<td>富山</td>
<td>556,238</td>
<td>大阪</td>
<td>499,674</td>
<td>大阪</td>
<td>510,962</td>
</tr>
<tr>
<td>大阪</td>
<td>543,829</td>
<td>北海道</td>
<td>482,579</td>
<td>北海道</td>
<td>456,015</td>
</tr>
<tr>
<td>新潟</td>
<td>450,740</td>
<td>新潟</td>
<td>478,092</td>
<td>奈良</td>
<td>428,960</td>
</tr>
<tr>
<td>新潟</td>
<td>408,462</td>
<td>八代</td>
<td>425,550</td>
<td>八代</td>
<td>427,875</td>
</tr>
<tr>
<td>北海道</td>
<td>367,766</td>
<td>府中</td>
<td>420,220</td>
<td>神奈川</td>
<td>396,097</td>
</tr>
<tr>
<td>熊本</td>
<td>335,472</td>
<td>奈良</td>
<td>373,322</td>
<td>奈良</td>
<td>346,489</td>
</tr>
<tr>
<td>神奈川</td>
<td>273,907</td>
<td>庶民</td>
<td>319,571</td>
<td>和歌山</td>
<td>352,522</td>
</tr>
<tr>
<td>愛知</td>
<td>261,933</td>
<td>京都</td>
<td>301,402</td>
<td>京都</td>
<td>303,920</td>
</tr>
<tr>
<td>奈良</td>
<td>254,731</td>
<td>愛知</td>
<td>260,369</td>
<td>愛知</td>
<td>254,948</td>
</tr>
<tr>
<td>宮城</td>
<td>249,590</td>
<td>愛知</td>
<td>224,723</td>
<td>愛知</td>
<td>215,572</td>
</tr>
<tr>
<td>石川</td>
<td>214,107</td>
<td>福井</td>
<td>154,408</td>
<td>福井</td>
<td>161,576</td>
</tr>
<tr>
<td>福井</td>
<td>213,000</td>
<td>千葉</td>
<td>154,408</td>
<td>千葉</td>
<td>140,065</td>
</tr>
<tr>
<td>神奈川</td>
<td>207,010</td>
<td>福井</td>
<td>136,936</td>
<td>福井</td>
<td>131,067</td>
</tr>
<tr>
<td>岩手</td>
<td>200,830</td>
<td>岩手</td>
<td>131,067</td>
<td>岩手</td>
<td>131,067</td>
</tr>
<tr>
<td>千葉</td>
<td>160,188</td>
<td>千葉</td>
<td>108,660</td>
<td>千葉</td>
<td>88,184</td>
</tr>
<tr>
<td>山形</td>
<td>139,753</td>
<td>京都市</td>
<td>73,058</td>
<td>京都市</td>
<td>86,789</td>
</tr>
<tr>
<td>群馬</td>
<td>78,987</td>
<td>京都</td>
<td>56,084</td>
<td>京都</td>
<td>58,832</td>
</tr>
<tr>
<td>滋賀</td>
<td>78,821</td>
<td>岐阜</td>
<td>49,728</td>
<td>岐阜</td>
<td>36,744</td>
</tr>
<tr>
<td>青森</td>
<td>44,977</td>
<td>京都</td>
<td>30,207</td>
<td>京都</td>
<td>35,880</td>
</tr>
<tr>
<td>秋田</td>
<td>20,587</td>
<td>秋田</td>
<td>8,713</td>
<td>秋田</td>
<td>9,669</td>
</tr>
<tr>
<td>沖縄</td>
<td>16,068</td>
<td>沖縄</td>
<td>記載なし</td>
<td>沖縄</td>
<td>9,669</td>
</tr>
</tbody>
</table>
Ⅳ 研究事例紹介
多環芳香族炭化水素除去フィルター用基材開発の基礎的研究

＜アレルギー発症促進物質 → 発がん性があるとされる物質＞

・ベンゾ(a)ピレン (BaP)
・フルオランテン
・ベンゾアントラセン
（有機高分子化合物 → 多環芳香族炭化水素）

一般的な粒状活性炭では除去できないが非晶質鉄水酸化物 (aFe) は除去可能

このaFeを吸着フィルターに応用するには、紙や不織布等の繊維を用いた基材に固定化させる必要があり、効果を発揮させるには以下の点に注目。

①吸着能力を最大限発揮するためのaFe粒径の最小化と再凝集の防止
②基材に用いた繊維の表面にaFeを敷き詰めて比表面積を高める

研究の結果・・・

＜製造したaFeスラリー＞
＜aFeを固定化させた基材（不織布）＞

①生成時のpH、攪拌時の回転数、アルカリ濃度、投入順序、粘性物質の添加等を検討した結果、微粒子化と再凝集防止は可能であることが分かったが、aFeの結晶成長が阻害されているようであり、吸着能力に影響を与える可能性が高い。

②バインダーの活用及び基材（不織布）の改質では繊維全体への固定化は実現できなかった。

＜今回の基礎的研究により得られたこと＞

★基材（不織布）の改質によりaFeの固定化量（付着量）や多環芳香族炭化水素の一種であるアントラセンの吸着能が向上する傾向が確認された。

★多環芳香族炭化水素吸着の評価手法として、ケミカルセンサアナライザーが活用できることが分かった。

＜水酸化ナトリウム溶液改質後の不織布繊維表面＞
＜アントラセンの波長別吸光量データ＞
湿式不織布製の「トイレに流せる」とする乳幼児用お尻ふき介護大人用お尻ふきのほぐれやすさ調査結果

【試験方法】JISP4501「トイレットペーパー」ほぐれやすさを準用
※試料 市販の「トイレに流せる」乳幼児用及び介護大人用お尻ふき（10種類）
※基準 100秒以内でほぐれる。
※試験片は、2枚以上重ねたものについては各々1枚毎に適用する。

【結果】（一部のみ掲載）

【結論】
市販の「トイレに流せる」とする乳幼児用及び介護大人用お尻ふきについて調査を行ったが、湿式不織布で構成されている製品では、JISP 4501の「ほぐれやすさの品質基準」を満たすことは困難である。

「トイレに流せる」商品群の景品表示法上の考え方について

消費者庁が平成24年12月21日に『トイレクリーナーの表示に関する実態調査結果』を同庁のホームページ上に公表した。

|----------|--|

○消費者庁の公表の要約

『5「トイレに流せる」等の表示についての景品表示法上の考え方』

事業者が、自己の供給するトイレクリーナーについて、トイレットペーパーJISPによるほぐれやすさの品質基準を満たしていないにもかかわらず、パッケージにおいて「トイレに流せる」、「水にほどる」といった表示の景品表示法上の考え方

パッケージに「トイレに流せる」、「水にほどる」と表示するためには…。

→ JISP4501「トイレットペーパー」のほぐれやすさの品質基準を満たさなければならない。

【対象の可能性がある製品群】・トイレクリーナー・紙製トイレカバー・乳幼児お尻ふき・介護大人用お尻ふき・紙タオル等

該当する製品の製造者の方は注意して下さい。